Please use this identifier to cite or link to this item:
Title: A 126 μW readout circuit in 65nm CMOS with successive approximation based thresholding for domain wall magnet based random number generator
Authors: Narasimman, Govind
Basu, Joydeep
Sethi, Pankaj
Krishnia, Sachin
Yi, Chen
Lew, Wen Siang
Basu, Arindam
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2020
Source: Narasimman, G., Basu, J., Sethi, P., Krishnia, S., Yi, C., Lew, W. S., & Basu, A. (2020). A 126 μW readout circuit in 65nm CMOS with successive approximation based thresholding for domain wall magnet based random number generator. IEEE Sensors Journal, 20(14), 7810-7818. doi:10.1109/JSEN.2020.2980021
Journal: IEEE Sensors Journal
Abstract: We present a novel readout circuit for a ferromagnetic Hall cross-bar based random number generator. The random orientation of magnetic domains are result of anomalous Hall-effect. These ferromagnetic Hall cross-bar structures can be integrated with the read out circuit to form a plug and play random number generator. The system can resolve up to 15-20 μV Hall-voltages from Hall probe. Application of current densities around 10 12 A/m 2 through the Ferromagnetic Hall cross-bar produces random Hall-voltage on the output terminals. To amplify the weak Hall-voltages (10-100 μV) in the presence of DC offsets, a modulation scheme is used to up-convert the signal and a band-pass amplifier is used to amplify the modulated signal. The bandpass amplifier circuit, motivated by neural recording amplifier is designed in 65nm CMOS and consumes 126 μW of power from a 1.2 V supply. Further, we present a successive approximation algorithm and its embedded implementation to set the desired threshold for digitizing the amplified Hall-voltage in presence of signal drift. Experimental results show that the resulting system can tolerate drifts in voltage up to 440 μV.
ISSN: 1530-437X
DOI: 10.1109/JSEN.2020.2980021
Schools: School of Electrical and Electronic Engineering 
School of Physical and Mathematical Sciences 
Rights: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at:
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Citations 50

Updated on Feb 24, 2024

Page view(s)

Updated on Feb 28, 2024

Download(s) 50

Updated on Feb 28, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.