Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Helinen_US
dc.contributor.authorZhong, Wen-Deen_US
dc.contributor.authorChen, Chenen_US
dc.contributor.authorAlphones, Arokiaswamien_US
dc.contributor.authorDu, Pengfeien_US
dc.contributor.authorZhang, Shengen_US
dc.contributor.authorXie, Xianzhongen_US
dc.identifier.citationYang, H., Zhong, W.-D., Chen, C., Alphones, A., Du, P., Zhang, S., & Xie, X. (2020). Coordinated resource allocation-based integrated visible light communication and positioning systems for indoor IoT. IEEE Transactions on Wireless Communications, 19(7), 4671-4684. doi:10.1109/TWC.2020.2986109en_US
dc.description.abstractWith the rapid development of Internet of Things (IoT) in the smart city, smart grid and smart industry, indoor communication and positioning are important fields of applications for indoor IoT. This paper presents an integrated visible light communication and positioning (VLCP) system for indoor IoT, in order to provide the high-speed data rate and high-accuracy positioning for IoT devices. where the filter bank multicarrier-based subcarrier multiplexing (FBMCSCM) technique is exploited to effectively reduce the out-ofband interference (OOBI) on both adjacent communication and positioning subcarriers. After that, we propose a coordinated resource allocation approach for the system with the purpose of maximizing the sum rate while guaranteeing the minimum data rates and positioning accuracy requirements of devices. To this end, we solve the optimization problem by decomposing it into two subproblems, where a low-complexity suboptimal subcarrier allocation approach is proposed and the sequential quadratic programming (SQP) method is adopted to solve the non-linearly constrained power allocation optimization problem. Numerical results verify the superiority in performance of the presented integrated VLCP system for indoor IoT, and the results also reveal that the proposed coordinated resource allocation approach can effectively improve the sum rate and the positioning accuracy compared with other resource allocation approaches.en_US
dc.relation.ispartofIEEE Transactions on Wireless Communicationsen_US
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at:
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleCoordinated resource allocation-based integrated visible light communication and positioning systems for indoor IoTen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.organizationAgency for Science, Technology and Researchen_US
dc.contributor.researchSingapore Institute of Manufacturing Technologyen_US
dc.description.versionAccepted versionen_US
dc.subject.keywordsInternet of Thingsen_US
dc.subject.keywordsVisible Light Communication and Positioningen_US
item.fulltextWith Fulltext-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
output.pdf3.4 MBAdobe PDFView/Open

Citations 20

Updated on Mar 7, 2021

Page view(s)

Updated on Jun 16, 2021


Updated on Jun 16, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.