Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/143537
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPang, Yipengen_US
dc.contributor.authorHu, Guoqiangen_US
dc.date.accessioned2020-09-08T02:01:50Z-
dc.date.available2020-09-08T02:01:50Z-
dc.date.issued2019-
dc.identifier.citationPang, Y., & Hu, G. (2018). Exact convergence of gradient-free distributed optimization method in a multi-agent system. 2018 IEEE Conference on Decision and Control (CDC), 5728-5733. doi:10.1109/CDC.2018.8619028en_US
dc.identifier.isbn9781538613955-
dc.identifier.urihttps://hdl.handle.net/10356/143537-
dc.description.abstract© 2018 IEEE. In this paper, a gradient-free algorithm is proposed for a set constrained distributed optimization problem in a multi-agent system under a directed communication network. For each agent, a pseudo-gradient is designed locally and utilized instead of the true gradient information to guide the decision variables update. Compared with most gradient-free optimization methods where a doubly-stochastic weighting matrix is usually employed, this algorithm uses a row-stochastic matrix plus a column-stochastic matrix, and is able to achieve exact asymptotic convergence to the optimal solution.en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.rights© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, in any current or future media, including reprinting/republishing this material for adverstising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at:https://doi.org/10.1109/CDC.2018.8619028en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleExact convergence of gradient-free distributed optimization method in a multi-agent systemen_US
dc.typeConference Paperen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.conference2018 IEEE Conference on Decision and Control (CDC)en_US
dc.identifier.doi10.1109/CDC.2018.8619028-
dc.description.versionAccepted versionen_US
dc.identifier.scopus2-s2.0-85062187754-
dc.identifier.spage5728en_US
dc.identifier.epage5733en_US
dc.subject.keywordsDistributed Optimizationen_US
dc.subject.keywordsMulti-agent Systemen_US
dc.citation.conferencelocationMiami Beach, FL, USA.en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:EEE Conference Papers
Files in This Item:
File Description SizeFormat 
cdc18.pdf243.12 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 20

8
Updated on Mar 17, 2023

Page view(s)

191
Updated on Mar 22, 2023

Download(s) 50

100
Updated on Mar 22, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.