Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/143765
Title: | Tailoring the mechanical and biodegradable properties of binary blends of biomedical thermoplastic elastomer | Authors: | Ang, Hui Ying Chan, Jingni Toong, Daniel Venkatraman, Subbu S. Chia, Sing Joo Huang, Ying Ying |
Keywords: | Engineering::Materials | Issue Date: | 2018 | Source: | Ang, H. Y., Chan, J., Toong, D., Venkatraman, S. S., Chia, S. J., & Huang, Y. Y. (2018). Tailoring the mechanical and biodegradable properties of binary blends of biomedical thermoplastic elastomer. Journal of the Mechanical Behavior of Biomedical Materials, 79, 64-72. doi:10.1016/j.jmbbm.2017.12.013 | Journal: | Journal of the Mechanical Behavior of Biomedical Materials | Abstract: | Blending polymers with complementary properties capitalizes on the inherent advantages of both components, making it possible to tailor the behaviour of the resultant material. A polymer blend consisting of an elastomer and thermoplastic can help to improve the mechanical integrity of the system without compromising on its processibility. A series of blends of biodegradable Poly(L-lactide-co-ɛ-caprolactone) (PLC) and Poly-(l,l-lactide-co-glycolic acid) (PLLGA), and PLC with Poly-(d,l-lactide-co-glycolic acid) (PDLLGA) were evaluated as a potential material for a biodegradable vesicourethral connector device. Based on the Tg of the blends, PLC/PLLGA formed an immiscible mixture while PLC/PDLLGA resulted in a compatible blend. The results showed that with the blending of PLC, the failure mode of PLLGA and PDLLGA changed from brittle to ductile fracture, with an significant decreas in tensile modulus and strength. SEM images demonstrated the different blend morphologies of different compositions during degradation. Gel Permeation Chromatography (GPC) and mechanical characterization revealed the degradation behaviour of the blends in this order (fastest to slowest): PDLLGA and PLC/PDLLGA blends > PLLGA and PLC/PLLGA blends > PLC. The PLC/PLLGA (70:30) blend was recommended as a suitable for the vesicourethral connector device application, highlighting the tailoring of blends to achieve a desired mechanical performance. | URI: | https://hdl.handle.net/10356/143765 | ISSN: | 1878-0180 | DOI: | 10.1016/j.jmbbm.2017.12.013 | Schools: | School of Materials Science and Engineering | Rights: | © 2018 Elsevier. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MSE Journal Articles |
SCOPUSTM
Citations
50
7
Updated on Mar 27, 2025
Web of ScienceTM
Citations
20
6
Updated on Oct 25, 2023
Page view(s)
412
Updated on Mar 26, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.