Please use this identifier to cite or link to this item:
Title: Linking fluid dynamics and olivine crystal scale zoning during simulated magma intrusion
Authors: Cheng, Lilu
Costa, Fidel
Bergantz, George
Keywords: Science::Geology
Issue Date: 2020
Source: Cheng, L., Costa, F., & Bergantz, G. (2020). Linking fluid dynamics and olivine crystal scale zoning during simulated magma intrusion. Contributions to Mineralogy and Petrology, 175(6), 53-. doi:10.1007/s00410-020-01691-3
Journal: Contributions to Mineralogy and Petrology
Abstract: The compositional zoning styles of natural crystals produced during magma intrusion can be used to investigate the structure of magmatic plumbing systems and its relation to expressions of volcanic unrest (seismic, deformation, volatiles). However, magma intrusion is a progressive, dynamic process and yields non-monotonic heterogeneities in physio-chemical variables such as complex spatial variations in temperature and liquid composition with time. Such changes in variables are difficult to incorporate in models of crystal zoning in natural systems. Here we take another approach by integrating the results of a numerical multiphase simulation of melt arrival in an olivine-rich reservoir with models of chemical re-equilibration of olivine. We evaluate the diversity of chemical zoning styles and the inferred time scales using Fe–Mg diffusion in olivine for a limited range of system geometries and time-composition-temperature values. Although our models are still a large simplification of the processes that may occur in natural systems we find several time-dependent and systematic relations between variables that can be used to better interpret natural data. The proportions of zoned and unzoned crystals, the zoning length scales, and the calculated diffusion times from the crystals, vary with time and the initial position of the crystal in the reservoir. These relationships can be used, for example, to better constrain the plumbing structure and dynamics of mafic eruptions from monogenetic volcanoes by detailed studies of changes in the zoning of the crystal cargo with eruptive sequence. Moreover, we also find that the time scales obtained from modeling of crystals at a single temperature and boundary condition tend to be shorter (> about 25%) than the residence time, which could also be tested in natural studies by combining crystal time scale records with monitoring datasets.
ISSN: 0010-7999
DOI: 10.1007/s00410-020-01691-3
DOI (Related Dataset): 10.21979/N9/M889FH
Rights: © 2020 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:ASE Journal Articles

Citations 20

Updated on Dec 1, 2021

Citations 20

Updated on Dec 1, 2021

Page view(s)

Updated on May 25, 2022


Updated on May 25, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.