Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/144013
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuah, Chong Yangen_US
dc.contributor.authorGoh, Kunlien_US
dc.contributor.authorYang, Yanqinen_US
dc.contributor.authorGong, Heqingen_US
dc.contributor.authorLi, Wenen_US
dc.contributor.authorKarahan, H. Enisen_US
dc.contributor.authorGuiver, Michael D.en_US
dc.contributor.authorWang, Rongen_US
dc.contributor.authorBae, Tae-Hyunen_US
dc.date.accessioned2020-10-08T02:58:32Z-
dc.date.available2020-10-08T02:58:32Z-
dc.date.issued2018-
dc.identifier.citationChuah, C. Y., Goh, K., Yang, Y., Gong, H., Li, W., Karahan, H. E., ... Bae, T.-H. (2018). Harnessing filler materials for enhancing biogas separation membranes. Chemical Reviews, 118(18), 8655-8769. doi: 10.1021/acs.chemrev.8b00091en_US
dc.identifier.issn1520-6890en_US
dc.identifier.urihttps://hdl.handle.net/10356/144013-
dc.description.abstractBiogas is an increasingly attractive renewable resource, envisioned to secure future energy demands and help curb global climate change. To capitalize on this resource, membrane processes and state-of-the-art membranes must efficiently recover methane (CH4) from biogas by separating carbon dioxide (CO2). Composite (a.k.a. mixed-matrix) membranes, prepared from common polymers and rationally selected/engineered fillers, are highly promising for this application. This review comprehensively examines filler materials that are capable of enhancing the CO2/CH4 separation performance of polymeric membranes. Specifically, we highlight novel synthetic strategies for engineering filler materials to develop high-performance composite membranes. Besides, as the matrix components (polymers) of composite membranes largely dictate the overall gas separation performances, we introduce a new empirical metric, the "Filler Enhancement Index" ( Findex), to aid researchers in assessing the effectiveness of the fillers from a big data perspective. The Findex systematically decouples the effect of polymer matrices and critically evaluates both conventional and emerging fillers to map out a future direction for next-generation (bio)gas separation membranes. Beyond biogas separation, this review is of relevance to a broader community with interests in composite membranes for other gas separation processes, as well as water treatment applications.en_US
dc.language.isoenen_US
dc.relation.ispartofChemical reviewsen_US
dc.rights© 2018 American Chemical Society. All rights reserved.en_US
dc.subjectEngineering::Chemical engineering::Biochemical engineeringen_US
dc.titleHarnessing filler materials for enhancing biogas separation membranesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.identifier.doi10.1021/acs.chemrev.8b00091-
dc.identifier.pmid30136837-
dc.identifier.issue18en_US
dc.identifier.volume118en_US
dc.identifier.spage8655en_US
dc.identifier.epage8769en_US
dc.subject.keywordsCompositesen_US
dc.subject.keywordsPolymersen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCBE Journal Articles

SCOPUSTM   
Citations 5

189
Updated on May 28, 2023

Web of ScienceTM
Citations 5

171
Updated on May 27, 2023

Page view(s)

204
Updated on May 30, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.