Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/144035
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYao, Chang-Jiangen_US
dc.contributor.authorWu, Zhenzhenen_US
dc.contributor.authorXie, Jianen_US
dc.contributor.authorYu, Feien_US
dc.contributor.authorGuo, Weien_US
dc.contributor.authorXu, Zhichuan Jasonen_US
dc.contributor.authorLi, Dong-Shengen_US
dc.contributor.authorZhang, Shanqingen_US
dc.contributor.authorZhang, Qichunen_US
dc.date.accessioned2020-10-09T02:14:54Z-
dc.date.available2020-10-09T02:14:54Z-
dc.date.issued2020-
dc.identifier.citationYao, C.-J., Wu, Z., Xie, J., Yu, F., Guo, W., Xu, Z. J., ... Zhang, Q. (2020). Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem, 13(9), 2457-2463. doi:10.1002/cssc.201903007en_US
dc.identifier.issn1864-564Xen_US
dc.identifier.urihttps://hdl.handle.net/10356/144035-
dc.description.abstractSearching new organic cathode materials to address the issues of poor cycle stability and low capacity in lithium ion batteries (LIBs) is very important and highly desirable. In this research, a 2D boroxine-linked chemically-active pyrene-4,5,9,10-tetraone (PTO) covalent organic framework (2D PPTODB COFs) was synthesized as an organic cathode material with remarkable electrochemical properties, including high electrochemical activity (four redox electrons), safe oxidation potential window (between 2.3 and 3.08 V vs. Li/Li+ ), superb structural/chemical stability, and strong adhesiveness. A binder-free cathode was obtained by mixing 70 wt % PPTODB and 30 wt % carbon nanotubes (CNTs) as a conductive additive. Promoted by the fast kinetics of electrons/ions, high electrochemical activity, and effective π-π interaction between PPTODB and CNTs, LIBs with the as-prepared cathode exhibited excellent electrochemical performance: a high specific capacity of 198 mAh g-1 , a superb rate ability (the capacity at 1000 mA g-1 can reach 76 % of the corresponding value at 100 mA g-1 ), and a stable coulombic efficiency (≈99.6 % at the 150th cycle). This work suggests that the concept of binder-free 2D electroactive materials could be a promising strategy to approach energy storage with high energy density.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationAcRF Tier 1 RG 111/17en_US
dc.relationAcRF Tier 1 RG 2/17en_US
dc.relationAcRF Tier 1 RG 114/16en_US
dc.relationAcRF Tier 1 RG 8/16en_US
dc.relationAcRF Tier 2 MOE 2017‐T2‐1‐021en_US
dc.relationAcRF Tier 2 MOE 2018‐T2‐1‐070en_US
dc.relationAustralian Research Council (ARC) Discovery Project DP160102627en_US
dc.relationAustralian Research Council (ARC) Discovery Project DP1701048343en_US
dc.relation.ispartofChemSusChemen_US
dc.rightsThis is the accepted version of the following article: Yao, C.-J., Wu, Z., Xie, J., Yu, F., Guo, W., Xu, Z. J., ... Zhang, Q. (2020). Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem, 13(9), 2457-2463. doi:10.1002/cssc.201903007, which has been published in final form at 10.1002/cssc.201903007. This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy [https://authorservices.wiley.com/authorresources/Journal-Authors/licensing/self-archiving.html].en_US
dc.subjectEngineering::Materialsen_US
dc.subjectEngineering::Chemical engineeringen_US
dc.titleTwo-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion batteryen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.organizationBeijing Institute of Technologyen_US
dc.contributor.organizationState Key Laboratory of Explosion Science and Technologyen_US
dc.identifier.doi10.1002/cssc.201903007-
dc.description.versionAccepted versionen_US
dc.identifier.pmid31782976-
dc.identifier.issue9en_US
dc.identifier.volume13en_US
dc.identifier.spage2457en_US
dc.identifier.epage2463en_US
dc.subject.keywords2D COFsen_US
dc.subject.keywordsPyrene-4,5,9,10-tetraoneen_US
dc.description.acknowledgementMOE 2017‐T2‐1‐021en_US
dc.description.acknowledgementMOE 2018‐T2‐1‐070en_US
dc.description.acknowledgementAcRF Tier 1 RG 2/17en_US
dc.description.acknowledgementAcRF Tier 1 RG 114/16en_US
dc.description.acknowledgementAcRF Tier 1 RG 111/17en_US
dc.description.acknowledgementAcRF Tier 1 RG 8/16en_US
dc.description.acknowledgementAustralian Research Council (ARC) Discovery Project DP160102627en_US
dc.description.acknowledgementAustralian Research Council (ARC) Discovery Project DP1701048343en_US
dc.description.acknowledgementBeijing Institute of Technologyen_US
dc.description.acknowledgementState Key Laboratory of Explosion Science and Technologyen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:MSE Journal Articles
Files in This Item:
File Description SizeFormat 
ChemSusChem Two-Dimensional 2D Covalent Organic Framework.pdf374.52 kBAdobe PDFView/Open

SCOPUSTM   
Citations 10

21
Updated on Mar 2, 2021

PublonsTM
Citations 10

20
Updated on Mar 8, 2021

Page view(s)

81
Updated on Sep 22, 2021

Download(s) 50

131
Updated on Sep 22, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.