Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/144037
Title: Asynchronous quasi delay insensitive majority voters corresponding to quintuple modular redundancy for mission/safety-critical applications
Authors: Balasubramanian, Padmanabhan
Mastorakis, N. E.
Keywords: Engineering::Computer science and engineering::Hardware
Issue Date: 2020
Source: Balasubramanian, P., & Mastorakis, N. E. (2020). Asynchronous quasi delay insensitive majority voters corresponding to quintuple modular redundancy for mission/safety-critical applications. PloS One, 15(9), e0239395-. doi:10.1371/journal.pone.0239395
Journal: PloS One
Abstract: Electronic circuits and systems employed in mission- and safety-critical applications such as space, aerospace, nuclear plants etc. tend to suffer from multiple faults due to radiation and other harsh external phenomena. To overcome single or multiple faults from affecting electronic circuits and systems, progressive module redundancy (PMR) has been suggested as a potential solution that recommends the use of different levels of redundancy for the vulnerable portions of a circuit or system depending upon their criticality. According to PMR, triple modular redundancy (TMR) can be used where a single fault is likely to occur and should be masked, and quintuple modular redundancy (QMR) can be used where double faults are likely to occur and should be masked. In this article, we present asynchronous QDI majority voter designs for QMR and state which are preferable from cycle time (i.e., speed), area, power, and energy perspectives. Towards this, we implemented example QMR circuits in a robust QDI asynchronous design style by employing a delay insensitive dual rail code for data encoding and adopting four-phase handshake protocols for data communication. Based on physical implementations using a 32/28nm CMOS process, we find that our proposed QMR majority voter achieves improved optimization in speed and energy.
URI: https://hdl.handle.net/10356/144037
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0239395
Rights: © 2020 Balasubramanian, Mastorakis. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Journal Articles

Files in This Item:
File Description SizeFormat 
journal.pone.0239395.pdfpublished version3.31 MBAdobe PDFView/Open

Page view(s)

125
Updated on May 15, 2022

Download(s)

13
Updated on May 15, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.