Please use this identifier to cite or link to this item:
Title: Fired neuron rate based decision tree for detection of adversarial examples in DNNs
Authors: Wang, Si
Liu, Wenye
Chang, Chip-Hong
Keywords: Engineering::Electrical and electronic engineering::Computer hardware, software and systems
Issue Date: 2020
Source: Wang, S., Liu, W., & Chang, C.-H. (2020). Fired neuron rate based decision tree for detection of adversarial examples in DNNs. Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/ISCAS45731.2020.9180476
Project: CHFA-GC1-AW01
Conference: 2020 IEEE International Symposium on Circuits and Systems (ISCAS)
Abstract: Deep neural network (DNN) is a prevalent machine learning solution to computer vision problems. The most criticized vulnerability of deep learning is its susceptibility towards adversarial images crafted by maliciously adding infinitesimal distortions to the benign inputs. Such negatives can fool a classifier. Existing countermeasures against these adversarial attacks are mainly developed based on software model of DNNs by using modified training during learning or modified input during testing, modifying networks or changing loss/activation functions, or relying on add-on models for classifying unseen examples. These approaches do not consider the optimization for hardware implementation of the learning models. In this paper, a new thresholding method is proposed based on comparators integrated into the most discriminative layers of the DNN determined by their layer-wise fired neuron rates between adversarial and normal inputs. Effectiveness of the method is validated on the ImageNet dataset with 8-bit truncated models for the state-of-the-art DNN architectures. A high detection rate of up to 98% with only 4.5% of false positive rate is achieved. The results show a significant improvement on both detection rate and false positive rate compared with previous countermeasures against the most practical non-invasive universal perturbation attack on deep learning based AI chip.
DOI: 10.1109/ISCAS45731.2020.9180476
DOI (Related Dataset):
Schools: School of Electrical and Electronic Engineering 
Research Centres: VIRTUS, IC Design Centre of Excellence 
Rights: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at:
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Conference Papers

Files in This Item:
File Description SizeFormat 
PID6471825.pdfFired Neuron Rate Based Decision Tree for Detection of Adversarial Examples in DNNs447.52 kBAdobe PDFThumbnail

Page view(s)

Updated on Feb 21, 2024

Download(s) 50

Updated on Feb 21, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.