Please use this identifier to cite or link to this item:
Title: An interactive conflict solver for learning air traffic conflict resolutions
Authors: Tran, Ngoc Phu
Pham, Duc-Thinh
Goh, Sim Kuan
Alam, Sameer
Duong, Vu
Keywords: Engineering::Computer science and engineering
Issue Date: 2020
Source: Tran, P. N., Pham, D.-T., Goh, S. K., Alam, S., & Duong, V. (2020). An interactive conflict solver for learning air traffic conflict resolutions. Journal of Aerospace Information Systems, 17(6), 271-277. doi:10.2514/1.I010807
Journal: Journal of Aerospace Information Systems
Abstract: The increasing demand in air transportation is pushing the current air traffic management system to its limits in the airspace capacity and workload of air traffic controllers (ATCOs). ATCOs are in an urgent need of assistant tools to aid them in dealing with increased traffic, specifically in resolving potential conflict. Because current automated conflict resolutions are not in conformance with the thinking or preferences of individual ATCOs, consequently, they are unlikely accepted by the ATCOs. In this work, an artificial intelligence (AI) system is built as a digital assistant to support ATCOs in resolving potential conflicts. Our system consists of two core components: an intelligent interactive conflict solver (iCS) to acquire ATCOs’ demonstrations, and an AI agent. The AI agent is based on reinforcement learning to suggest conflict resolutions. It is observed that providing the AI agent with the human resolutions, which are acquired and characterized by our intelligent interactive conflicts solver, not only improves the agent’s performance but also gives it the capability to suggest more humanlike resolutions. That could help to increase the ATCOs’ acceptance rate of the agent’s suggested resolutions. Our system could be further developed as personalized digital assistants of ATCOs to maintain their workloads manageable when they have to deal with sectors with increased traffic.
ISSN: 2327-3097
DOI: 10.2514/1.I010807
Rights: © 2020 American Institute of Aeronautics and Astronautics (AIAA). All rights reserved. This paper was published in Journal of Aerospace Information Systems and is made available with permission of American Institute of Aeronautics and Astronautics (AIAA).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
JAIS_Manuscript_Resubmitted__R1 (2).pdf2.27 MBAdobe PDFView/Open

Page view(s)

Updated on Jun 27, 2022

Download(s) 50

Updated on Jun 27, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.