Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/144580
Title: Aircraft engine turbine RUL prediction using NADINE
Authors: Tsang, Aloysius Jin Hou
Keywords: Engineering::Computer science and engineering::Computing methodologies::Pattern recognition
Issue Date: 2020
Publisher: Nanyang Technological University
Abstract: RUL prediction has become a widely researched topic in recent years. This paper describes the use of the deep learning approach Neural Network with Dynamically Evolving Capability (NADINE) to overcome RUL prediction challenges used in static deep learning methods - the need for predefined initial network structure and parameters. NADINE offers a fully flexible and self-growing network capable of growing its hidden layers and hidden nodes on demand without the use of problem-specific parameters. Despite its standard MLP structure, it adopts two strategies to overcome the problem without compromising the performance of the network - that is the adaptive memory strategy and soft forgetting. The use of a dynamic self-growing network has demonstrated decent performance on RUL regression prediction tasks.
URI: https://hdl.handle.net/10356/144580
Schools: School of Computer Science and Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report RUL prediction using NADINE.pdf
  Restricted Access
9.62 MBAdobe PDFView/Open

Page view(s)

198
Updated on Oct 2, 2023

Download(s)

8
Updated on Oct 2, 2023

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.