Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/144907
Title: A laser microdissection-based axotomy model incorporating the use of biomimicking fiber scaffolds reveals microRNAs promote axon regeneration over long injury distances
Authors: Zhang, Na
Lin, Junquan
Chin, Jiah Shin
Zhang, Kunyu
Chew, Sing Yian
Keywords: Engineering::Chemical engineering
Issue Date: 2020
Source: Zhang, N., Lin, J., Chin, J. S., Zhang, K., & Chew, S. Y. (2020). A laser microdissection-based axotomy model incorporating the use of biomimicking fiber scaffolds reveals microRNAs promote axon regeneration over long injury distances. Biomaterials Science, 8(22), 6286-6300. doi:10.1039/D0BM01380C
Journal: Biomaterials Science
Abstract: The regeneration of injured neurons over long injury distances remains suboptimal. In order to successfully stimulate nerve regrowth, potent biomolecules are necessary. Furthermore, reproducible and translatable methods to test the potency of candidate drugs in enhancing nerve regeneration over long axotomy distances are also needed. To address these issues, we report a novel laser microdissection-based axotomy model that involves the use of biomimicking aligned fiber substrates to precisely control neuronal axotomy distances. Correspondingly, we demonstrate that in the absence of therapeutics, dorsal root ganglion (DRG) explants (consisting of neurons) axotomized within short distances from the main cell somas regenerated significantly longer than axons that were injured more distally (p < 0.05). However, when treated with a cocktail of microRNAs (miR-132/miR-222/miR-431), robust neurite outgrowth was observed (p < 0.05). Specifically, microRNA treatment promoted neurite outgrowth by ~2.2-fold as compared to untreated cells and this enhancement was more significant under the less conducive regeneration condition of a long axotomy distance (i.e. 1000 µm from the cell soma). Besides that, we demonstrated that the treatment of miR-132/miR-222/miR-431 led to longer length of nerve regeneration as well as a bigger nerve extension area after sciatic nerve transection injury. These results indicate that distance effects on axonal regrowth may be overcome by the effects of microRNAs and that these microRNAs may serve as promising therapeutics for nerve injury treatment.
URI: https://hdl.handle.net/10356/144907
ISSN: 0021-0031
DOI: 10.1039/D0BM01380C
Rights: © 2020 The Author(s) (Royal Society of Chemistry). All rights reserved. This paper was published in Biomaterials Science and is made available with permission of The Author(s) (Royal Society of Chemistry).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Files in This Item:
File Description SizeFormat 
d0bm01380c.pdf2.59 MBAdobe PDFView/Open

Page view(s)

92
Updated on Nov 28, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.