Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/145404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNie, Linaen_US
dc.contributor.authorGoh, Kunlien_US
dc.contributor.authorWang, Yuen_US
dc.contributor.authorLee, Jaewooen_US
dc.contributor.authorHuang, Yinjuanen_US
dc.contributor.authorKarahan, Huseyin Enisen_US
dc.contributor.authorZhou, Kunen_US
dc.contributor.authorGuiver, Michael D.en_US
dc.contributor.authorBae, Tae-Hyunen_US
dc.date.accessioned2020-12-21T04:12:57Z-
dc.date.available2020-12-21T04:12:57Z-
dc.date.issued2020-
dc.identifier.citationNie, L., Goh, K., Wang, Y., Lee, J., Huang, Y., Karahan, H. E., . . . Bae, T.-H. (2020). Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Science Advances, 6(17), eaaz9184-. doi:10.1126/sciadv.aaz9184en_US
dc.identifier.issn2375-2548en_US
dc.identifier.urihttps://hdl.handle.net/10356/145404-
dc.description.abstractMembranes for organic solvent nanofiltration (OSN) or solvent-resistant nanofiltration (SRNF) offer unprecedented opportunities for highly efficient and cost-competitive solvent recovery in the pharmaceutical industry. Here, we describe small-flake graphene oxide (SFGO) membranes for high-performance OSN applications. Our strategy exploits lateral dimension control to engineer shorter and less tortuous transport pathways for solvent molecules. By using La3+ as a cross-linker and spacer for intercalation, the SFGO membrane selective layer was stabilized, and size-dependent ultrafast selective molecular transport was achieved. The methanol permeance was up to 2.9-fold higher than its large-flake GO (LFGO) counterpart, with high selectivity toward three organic dyes. More importantly, the SFGO-La3+ membrane demonstrated robust stability for at least 24 hours under hydrodynamic stresses that are representative of realistic OSN operating conditions. These desirable attributes stem from the La3+ cross-linking, which forms uniquely strong coordination bonds with oxygen-containing functional groups of SFGO. Other cations were found to be ineffective.en_US
dc.language.isoenen_US
dc.relation.ispartofScience Advancesen_US
dc.rights© 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).en_US
dc.subjectEngineering::Materialsen_US
dc.titleRealizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltrationen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.researchSingapore Membrane Technology Centreen_US
dc.contributor.researchNanyang Environment and Water Research Instituteen_US
dc.contributor.researchEnvironmental Process Modelling Centreen_US
dc.identifier.doi10.1126/sciadv.aaz9184-
dc.description.versionPublished versionen_US
dc.identifier.pmid32494655-
dc.identifier.issue17en_US
dc.identifier.volume6en_US
dc.subject.keywordsMembranesen_US
dc.subject.keywordsNanofiltrationen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SCBE Journal Articles
Files in This Item:
File Description SizeFormat 
Science Journals — AAAS - eaaz9184.full.pdf5.47 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

206
Updated on Aug 31, 2024

Web of ScienceTM
Citations 5

146
Updated on Oct 28, 2023

Page view(s)

303
Updated on Sep 6, 2024

Download(s) 50

99
Updated on Sep 6, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.