Please use this identifier to cite or link to this item:
Title: A quasi‐solid‐state tristate reversible electrochemical mirror device with enhanced stability
Authors: Eh, Alice Lee-Sie
Chen, Jingwei
Yu, Shu Hearn
Thangavel, Gurunathan
Zhou, Xinran
Cai, Guofa
Li, Shaohui
Chua, Daniel H. C.
Lee, Pooi See
Keywords: Engineering::Materials
Issue Date: 2020
Source: Eh, A. L.-S., Chen, J., Yu, S. H., Thangavel, G., Zhou, X., Cai, G., . . . Lee, P. S. (2020). A quasi‐solid‐state tristate reversible electrochemical mirror device with enhanced stability. Advanced Sciencel, 7(13), 1903198-. doi:10.1002/advs.201903198
Journal: Advanced Science 
Abstract: Reversible electrochemical mirror (REM) electrochromic devices with electrochemical tunability in multiple optical states are exciting alternatives to conventional electrochromic smart windows. Electrochromic devices are studied extensively, yet widespread adoptions have not been achieved due to problems associated with durability, switching speed, limited options on optical states, and cost. In this study, a REM electrochromic device based on CuSn alloy is developed, which offers highly reversible switching between transparent, greyish‐blue, and mirror states via reversible electrodeposition and dissolution. The alloying element, Sn acts as an electrochemical mediator, which facilitates the electrodeposition and dissolution of Cu. The CuSn‐based REM device shows superior cycling stability for 2400 cycles (transmittance mode) and 1000 cycles (reflectance mode). The electrodeposited CuSn alloy film is resistant to surface oxidation in ambient air, with a 2.9% difference in reflectance at 2000 nm after 3 days. In addition, the alloy film exhibits excellent NIR reflectance property with thermal modulation of 18.5 °C at a high temperature of 180 °C. The REM device with zero power consumption maintains its mirror state for at least 100 min, making it a promising candidate for energy‐efficient applications.
ISSN: 2198-3844
DOI: 10.1002/advs.201903198
Rights: © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
advs.201903198.pdf2.03 MBAdobe PDFView/Open

Citations 50

Updated on Mar 10, 2021

Citations 50

Updated on Mar 8, 2021

Page view(s)

Updated on May 18, 2022


Updated on May 18, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.