Please use this identifier to cite or link to this item:
Title: Solid-state protein junctions : cross-laboratory study shows preservation of mechanism at varying electronic coupling
Authors: Mukhopadhyay, Sabyasachi
Karuppannan, Senthil Kumar
Guo, Cunlan
Fereiro, Jerry A.
Bergren, Adam
Mukundan, Vineetha
Qiu, Xinkai
Castañeda Ocampo, Olga E.
Chen, Xiaoping
Chiechi, Ryan C.
McCreery, Richard
Pecht, Israel
Sheves, Mordechai
Pasula, Rupali Reddy
Lim, Sierin
Nijhuis, Christian A.
Vilan, Ayelet
Cahen, David
Keywords: Engineering::Chemical engineering
Issue Date: 2020
Source: Mukhopadhyay, S., Karuppannan, S. K., Guo, C., Fereiro, J. A., Bergren, A., Mukundan, V., . . . Cahen, D. (2020). Solid-state protein junctions : cross-laboratory study shows preservation of mechanism at varying electronic coupling. iScience, 23(5), 101099-. doi:10.1016/j.isci.2020.101099
Project: MOE2015-T2-2-134
Journal: iScience
Abstract: Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageoof junctions varies from 105 to 10-3 μm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.
ISSN: 2589-0042
DOI: 10.1016/j.isci.2020.101099
Rights: © 2020 The Author(s). This is an open access article under the CC BY-NC-ND license (
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Files in This Item:
File Description SizeFormat 
PIIS2589004220302844.pdf5.86 MBAdobe PDFView/Open

Citations 50

Updated on Mar 10, 2021

Page view(s)

Updated on Apr 14, 2021


Updated on Apr 14, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.