Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/145660
Title: Mitochondrial dysfunction and Parkinson’s disease — near-infrared photobiomodulation as a potential therapeutic strategy
Authors: Foo, Aaron Song Chuan
Soong, Tuck Wah
Yeo, Tseng Tsai
Lim, Kah-Leong
Keywords: Science::Medicine
Issue Date: 2020
Source: Foo, A. S. C., Soong, T. W., Yeo, T. T., & Lim, K.-L. (2020). Mitochondrial dysfunction and Parkinson’s disease — near-infrared photobiomodulation as a potential therapeutic strategy. Frontiers in Aging Neuroscience, 12, 89-. doi:10.3389/fnagi.2020.00089
Journal: Frontiers in Aging Neuroscience
Abstract: As the main driver of energy production in eukaryotes, mitochondria are invariably implicated in disorders of cellular bioenergetics. Given that dopaminergic neurons affected in Parkinson’s disease (PD) are particularly susceptible to energy fluctuations by their high basal energy demand, it is not surprising to note that mitochondrial dysfunction has emerged as a compelling candidate underlying PD. A recent approach towards forestalling dopaminergic neurodegeneration in PD involves near-infrared (NIR) photobiomodulation (PBM), which is thought to enhance mitochondrial function of stimulated cells through augmenting the activity of cytochrome C oxidase. Notwithstanding this, our understanding of the neuroprotective mechanism of PBM remains far from complete. For example, studies focusing on the effects of PBM on gene transcription are limited, and the mechanism through which PBM exerts its effects on distant sites (i.e., its “abscopal effect”) remains unclear. Also, the clinical application of NIR in PD proves to be challenging. Efficacious delivery of NIR light to the substantia nigra pars compacta (SNpc), the primary site of disease pathology in PD, is fraught with technical challenges. Concerted efforts focused on understanding the biological effects of PBM and improving the efficiency of intracranial NIR delivery are therefore essential for its successful clinical translation. Nonetheless, PBM represents a potential novel therapy for PD. In this review, we provide an update on the role of mitochondrial dysfunction in PD and how PBM may help mitigate the neurodegenerative process. We also discussed clinical translation aspects of this treatment modality using intracranially implanted NIR delivery devices.
URI: https://hdl.handle.net/10356/145660
ISSN: 1663-4365
DOI: 10.3389/fnagi.2020.00089
Rights: © 2020 Foo, Soong, Yeo and Lim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:LKCMedicine Journal Articles

Files in This Item:
File Description SizeFormat 
fnagi-12-00089.pdf1.34 MBAdobe PDFView/Open

SCOPUSTM   
Citations 50

1
Updated on Mar 10, 2021

PublonsTM
Citations 20

1
Updated on Mar 8, 2021

Page view(s)

146
Updated on Jul 1, 2022

Download(s)

12
Updated on Jul 1, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.