Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/145693
Title: Metal concentrations and source apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a biomass burning season
Authors: Kayee, Jariya
Sompongchaiyakul, Penjai
Sanwlani, Nivedita
Bureekul, Sujaree
Wang, Xianfeng
Das, Reshmi
Keywords: Science::Geology
Issue Date: 2020
Source: Kayee, J., Sompongchaiyakul, P., Sanwlani, N., Bureekul, S., Wang, X., & Das, R. (2020). Metal Concentrations and Source Apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a Biomass Burning Season. ACS Earth and Space Chemistry, 4(7), 1213–1226. doi:10.1021/acsearthspacechem.0c00140
Project: MOE-NTU_RG125/16-(S)
Journal: ACS Earth and Space Chemistry
Abstract: One of the persistent environmental problems in the provinces of northern Thailand is severe air pollution during the dry season because of open vegetation burning by farmers for land clearance purpose. Aerosol optical depth and Ångström exponent data from MODIS-Terra satellite indicated that from mid-March to April, 2019, entire Thailand was covered with a high concentration of fine-sized aerosols. Trace metal concentrations of PM2.5 collected from Chiang Rai in northern Thailand and Bangkok in southern Thailand between January and April 2019 were analyzed. Average concentrations of crustal metals such as Al, Ca, and Fe are higher in Chiang Rai compared to that in Bangkok. The Fe/Al ratio in Chiang Rai decreases from 1.65 during the onset of haze to 0.87 during the peak haze approaching a crustal ratio of 0.48. In contrast, Bangkok has higher Na, Mg, and Zn with an average Na/Mg ratio of 6.07 indicative of a sea spray (Na/Mg ∼ 8) origin. Principal component analysis identifies three possible sources in Chiang Rai: (1) crustal dust and biomass burning, (2) industrial source, and (3) refuse incineration mixed with road dust; and for Bangkok (1) natural background, industrial emissions, and coal combustion, (2) traffic emission, and (3) sea spray. The ranges of Pb isotope ratios in the bulk fraction of PM2.5 in Chiang Rai (206Pb/207Pb = 1.1445–1.1657 and 208Pb/207Pb = 2.4244–2.4468) and Bangkok (206Pb/207Pb = 1.1343–1.1685 and 208Pb/207Pb = 2.4138–2.4450) are not significantly different. However, in a time series plot, 206Pb/207Pb ratios in Chiang Rai follow PM2.5 during the peak burning season and correlate well with the Al/Pb (r2 = 0.61) ratios, indicating that at least part of the Pb is derived from crustal dust during peak fire. Using a binary mixing model, the most radiogenic Pb isotopes in Chiang Rai during the peak haze can be explained by ∼5 to 30% mixing of crustal dust with ∼35–40% biomass burning generated aerosols with the background. From the trace metal systematics and Pb isotope ratios, it is evident that (1) during the biomass burning season, trace metals from Chiang Rai are not transported down south to Bangkok and (2) in addition to metals released from biomass burning, the raging fire remobilizes crustal dust that forms an important source of Pb and other trace metals in the Chiang Rai aerosol.
URI: https://hdl.handle.net/10356/145693
ISSN: 2472-3452
DOI: 10.1021/acsearthspacechem.0c00140
Rights: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Earth and Space Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsearthspacechem.0c00140
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:ASE Journal Articles

PublonsTM
Citations 20

3
Updated on Mar 5, 2021

Page view(s)

115
Updated on Jan 21, 2022

Download(s) 50

27
Updated on Jan 21, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.