Please use this identifier to cite or link to this item:
Title: Chiral plasmons with twisted atomic bilayers
Authors: Lin, Xiao
Liu, Zifei
Stauber, Tobias
Gómez-Santos, Guillermo
Gao, Fei
Chen, Hongsheng
Zhang, Baile
Low, Tony
Keywords: Science::Physics
Issue Date: 2020
Source: Lin, X., Liu, Z., Stauber, T., Gómez-Santos, G., Gao, F., Chen, H., . . . Low, T. (2020). Chiral plasmons with twisted atomic bilayers. Physical Review Letters, 125(7), 077401-. doi:10.1103/PhysRevLett.125.077401
Project: MOE2018‐T2‐1‐022 (S) 
Journal: Physical Review Letters 
Abstract: van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons.
ISSN: 0031-9007
DOI: 10.1103/PhysRevLett.125.077401
Rights: © 2020 American Physical Society (APS). All rights reserved. This paper was published in Physical Review Letters and is made available with permission of American Physical Society (APS).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
PhysRevLett.125.077401.pdf1.73 MBAdobe PDFView/Open

Citations 20

Updated on Mar 2, 2021

Citations 20

Updated on Mar 8, 2021

Page view(s)

Updated on May 5, 2021


Updated on May 5, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.