Please use this identifier to cite or link to this item:
Title: Probabilistic map matching of sparse and noisy smartphone location data
Authors: Jagadeesh, George Rosario
Srikanthan, Thambipillai
Keywords: Engineering::Computer science and engineering
Issue Date: 2015
Source: Jagadeesh, G. R., & Srikanthan, T. (2015). Probabilistic map matching of sparse and noisy smartphone location data. Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 812-817. doi:10.1109/ITSC.2015.137
Abstract: There is an immense amount of location data being collected today from smartphone users by various service providers. Due to bandwidth and battery-life considerations, smartphone locations are generally sampled at sparse intervals using energy-efficient, but inaccurate, alternatives to the power-hungry Global Positioning System (GPS). If sparse sequences of coarse location data obtained from mobile users can be accurately map-matched to travel paths on the road network, then this data can be effectively used for several traffic-related applications. Unlike most other map-matching methods in the literature, we, in this paper, focus on the problem of map-matching sparse and noisy non-GPS smartphone location data. We adopt the widely-followed Hidden Markov Model (HMM) approach and propose new probabilistic models for the observation and transition probabilities tailored towards the type of data being considered. Our map-matching method has been evaluated using ground-truth labelled non-GPS location data collected from real drives. Tests show that the accuracy of the proposed method is about 12% more than that of a comparable HMM-based method from the literature. Our results also show that the runtime and latency of the proposed method can be kept within reasonable bounds using simple techniques.
ISBN: 978-1-4673-6596-3
DOI: 10.1109/ITSC.2015.137
Rights: © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at:
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Conference Papers

Files in This Item:
File Description SizeFormat 
C15.pdf490.41 kBAdobe PDFView/Open

Citations 20

Updated on Mar 5, 2021

Page view(s)

Updated on Apr 19, 2021


Updated on Apr 19, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.