Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/145880
Title: Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines
Authors: Ahmed Ibrahim Samir Khalil
Siti Rawaidah Mohammad Muzaki
Chattopadhyay, Anupam
Sanyal, Amartya
Keywords: Science::Biological sciences
Issue Date: 2020
Source: Ahmed Ibrahim Samir Khalil, Siti Rawaidah Mohammad Muzaki, Chattopadhyay, A., & Sanyal, A. (2020). Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. BMC Bioinformatics, 21(1), 506-. doi:10.1186/s12859-020-03832-8
Project: RG46/16 
RG39/18 
Journal: BMC Bioinformatics 
Abstract: Background: Hi-C and its variant techniques have been developed to capture the spatial organization of chromatin. Normalization of Hi-C contact map is essential for accurate modeling and interpretation of high-throughput chromatin conformation capture (3C) experiments. Hi-C correction tools were originally developed to normalize systematic biases of karyotypically normal cell lines. However, a vast majority of available Hi-C datasets are derived from cancer cell lines that carry multi-level DNA copy number variations (CNVs). CNV regions display over- or under-representation of interaction frequencies compared to CN-neutral regions. Therefore, it is necessary to remove CNV-driven bias from chromatin interaction data of cancer cell lines to generate a euploid-equivalent contact map. Results: We developed the HiCNAtra framework to compute high-resolution CNV profiles from Hi-C or 3C-seq data of cancer cell lines and to correct chromatin contact maps from systematic biases including CNV-associated bias. First, we introduce a novel ‘entire-fragment’ counting method for better estimation of the read depth (RD) signal from Hi-C reads that recapitulates the whole-genome sequencing (WGS)-derived coverage signal. Second, HiCNAtra employs a multimodal-based hierarchical CNV calling approach, which outperformed OneD and HiNT tools, to accurately identify CNVs of cancer cell lines. Third, incorporating CNV information with other systematic biases, HiCNAtra simultaneously estimates the contribution of each bias and explicitly corrects the interaction matrix using Poisson regression. HiCNAtra normalization abolishes CNV-induced artifacts from the contact map generating a heatmap with homogeneous signal. When benchmarked against OneD, CAIC, and ICE methods using MCF7 cancer cell line, HiCNAtra-corrected heatmap achieves the least 1D signal variation without deforming the inherent chromatin interaction signal. Additionally, HiCNAtra-corrected contact frequencies have minimum correlations with each of the systematic bias sources compared to OneD’s explicit method. Visual inspection of CNV profiles and contact maps of cancer cell lines reveals that HiCNAtra is the most robust Hi-C correction tool for ameliorating CNV-induced bias. Conclusions: HiCNAtra is a Hi-C-based computational tool that provides an analytical and visualization framework for DNA copy number profiling and chromatin contact map correction of karyotypically abnormal cell lines. HiCNAtra is an open-source software implemented in MATLAB and is available at https://github.com/AISKhalil/HiCNAtra.
URI: https://hdl.handle.net/10356/145880
ISSN: 1471-2105
DOI: 10.1186/s12859-020-03832-8
Schools: School of Computer Science and Engineering 
School of Biological Sciences 
Rights: © 2020 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Journal Articles

Files in This Item:
File Description SizeFormat 
s12859-020-03832-8.pdf7.65 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

3
Updated on Mar 23, 2024

Web of ScienceTM
Citations 50

2
Updated on Oct 31, 2023

Page view(s)

270
Updated on Mar 28, 2024

Download(s) 50

71
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.