Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/146056
Title: Characterisation of CaCO3 phases during strain-specific ureolytic precipitation
Authors: Clarà Saracho, Alexandra
Haigh, Stuart K.
Hata, Toshiro
Soga, Kenichi
Farsang, Stefan
Redfern, Simon Anthony Turner
Marek, Ewa
Keywords: Engineering::Civil engineering
Issue Date: 2020
Source: Clarà Saracho, A., Haigh, S. K., Hata, T., Soga, K., Farsang, S., Redfern, S. A. T., & Marek, E. (2020). Characterisation of CaCO3 phases during strain-specific ureolytic precipitation. Scientific Reports, 10(1), 10168-. doi:10.1038/s41598-020-66831-y
Journal: Scientific Reports
Abstract: Numerous microbial species can selectively precipitate mineral carbonates with enhanced mechanical properties, however, understanding exactly how they achieve this control represents a major challenge in the field of biomineralisation. We have studied microbial induced calcium carbonate (CaCO3) precipitation (MICP) in three ureolytic bacterial strains from the Sporosarcina family, including S. newyorkensis, a newly isolated microbe from the deep sea. We find that the interplay between structural water and strain-specific amino acid groups is fundamental to the stabilisation of vaterite and that, under the same conditions, different isolates yield distinctly different polymorphs. The latter is found to be associated with different urease activities and, consequently, precipitation kinetics, which change depending on pressure-temperature conditions. Further, CaCO3 polymorph selection also depends on the coupled effect of chemical treatment and initial bacterial concentrations. Our findings provide new insights into strain-specific CaCO3 polymorphic selection and stabilisation, and open up promising avenues for designing bio-reinforced geo-materials that capitalise on the different particle bond mechanical properties offered by different polymorphs.
URI: https://hdl.handle.net/10356/146056
ISSN: 2045-2322
DOI: 10.1038/s41598-020-66831-y
Rights: © 2020 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:ASE Journal Articles

Files in This Item:
File Description SizeFormat 
s41598-020-66831-y.pdf1.8 MBAdobe PDFView/Open

SCOPUSTM   
Citations 20

2
Updated on Mar 8, 2021

PublonsTM
Citations 20

1
Updated on Mar 8, 2021

Page view(s)

142
Updated on Jun 25, 2022

Download(s)

13
Updated on Jun 25, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.