Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/146236
Title: Transport and lasing in topological photonic systems
Authors: Chattopadhyay, Udvas
Keywords: Science::Physics::Optics and light
Issue Date: 2020
Publisher: Nanyang Technological University
Source: Chattopadhyay, U. (2020). Transport and lasing in topological photonic systems. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: This thesis concerns the study of novel topological transport phenomena in photonic systems, particularly in valley photonic crystals, Weyl semimetals and photonic Chern insulators; and lasing in a valley photonic crystal. In the first part of the thesis, I present our study of an electrically pumped quantum cascade laser based on the topological edge states of a valley photonic crystal operating in THz frequency regime. The topological protection of lasing modes allows for irregular laser cavity design with robust mode spacings arising from the running wave nature of topological lasing modes that resist the formation of localized standing-waves. In the second part, I present our work on near field imaging of topological edge modes of a valley photonic crystal slab operating in infrared regime. The third part of the thesis describes our study of beam displacements in a Weyl semimetal. Beams in Weyl semimetals undergo both lateral (Goos-Hänchen shift) and transverse (Imbert-Fedorov shift) displacements upon reflecting off a gapped medium. We show that the displacement forms a half-vortex structure in momentum space. The center of the half-vortex is determined by the Fermi arc which provides a way to use bulk transport to probe the topological characteristics of a Weyl semimetal. In the last part of the thesis, I present our study of mode delocalization in a photonic Chern insulator. In contrast to trivial two-dimensional insulators, where all modes are localized when disorder is present, a single extended mode survives in Chern insulators up to a critical disorder strength. We study this phenomena in a photonic Chern insulator platform which is promising for direct experimental probing.
URI: https://hdl.handle.net/10356/146236
DOI: 10.32657/10356/146236
Schools: School of Physical and Mathematical Sciences 
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
Thesis_Udvas_Chattopadhyay.pdfThesis21.97 MBAdobe PDFThumbnail
View/Open

Page view(s) 50

518
Updated on Mar 24, 2025

Download(s) 20

222
Updated on Mar 24, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.