Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/146495
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ling, San | en_US |
dc.contributor.author | Özkaya, Buket | en_US |
dc.date.accessioned | 2021-02-22T05:06:32Z | - |
dc.date.available | 2021-02-22T05:06:32Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Ling, S., & Özkaya, B. (2021). New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 15(1). doi:10.3934/amc.2020038 | en_US |
dc.identifier.issn | 1930-5338 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/146495 | - |
dc.description.abstract | Two bounds on the minimum distance of cyclic codes are proposed. The first one generalizes the Roos bound by embedding the given cyclic code into a cyclic product code. The second bound also uses a second cyclic code, namely the non-zero-locator code, but is not directly related to cyclic product codes and it generalizes a special case of the Roos bound. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Advances in Mathematics of Communications | en_US |
dc.rights | © 2021 American Institute of Mathematical Sciences (AIMS). All rights reserved. | en_US |
dc.subject | Science::Mathematics::Applied mathematics::Information theory | en_US |
dc.title | New bounds on the minimum distance of cyclic codes | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Physical and Mathematical Sciences | en_US |
dc.identifier.doi | 10.3934/amc.2020038 | - |
dc.identifier.scopus | 2-s2.0-85099400681 | - |
dc.identifier.issue | 1 | en_US |
dc.identifier.volume | 15 | en_US |
dc.subject.keywords | Cyclic Codes | en_US |
dc.subject.keywords | Product Code | en_US |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | SPMS Journal Articles |
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.