Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/146495
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLing, Sanen_US
dc.contributor.authorÖzkaya, Buketen_US
dc.date.accessioned2021-02-22T05:06:32Z-
dc.date.available2021-02-22T05:06:32Z-
dc.date.issued2021-
dc.identifier.citationLing, S., & Özkaya, B. (2021). New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 15(1). doi:10.3934/amc.2020038en_US
dc.identifier.issn1930-5338en_US
dc.identifier.urihttps://hdl.handle.net/10356/146495-
dc.description.abstractTwo bounds on the minimum distance of cyclic codes are proposed. The first one generalizes the Roos bound by embedding the given cyclic code into a cyclic product code. The second bound also uses a second cyclic code, namely the non-zero-locator code, but is not directly related to cyclic product codes and it generalizes a special case of the Roos bound.en_US
dc.language.isoenen_US
dc.relation.ispartofAdvances in Mathematics of Communicationsen_US
dc.rights© 2021 American Institute of Mathematical Sciences (AIMS). All rights reserved.en_US
dc.subjectScience::Mathematics::Applied mathematics::Information theoryen_US
dc.titleNew bounds on the minimum distance of cyclic codesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.3934/amc.2020038-
dc.identifier.scopus2-s2.0-85099400681-
dc.identifier.issue1en_US
dc.identifier.volume15en_US
dc.subject.keywordsCyclic Codesen_US
dc.subject.keywordsProduct Codeen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SPMS Journal Articles

Page view(s)

145
Updated on Jun 28, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.