Please use this identifier to cite or link to this item:
Title: The stoichiometry of TCNQ-based organic charge-transfer cocrystals
Authors: Gao, Jiaoyang
Zhai, Huifei
Hu, Peng
Jiang, Hui
Keywords: Engineering::Materials
Issue Date: 2020
Source: Gao, J., Zhai, H., Hu, P., & Jiang, H. (2020). The stoichiometry of TCNQ-based organic charge-transfer cocrystals. Crystals, 10(11), 993-. doi:10.3390/cryst10110993
Journal: Crystals
Abstract: Organic charge-transfer cocrystals (CTCs) have attracted significant research attention due to their wide range of potential applications in organic optoelectronic devices, organic magnetic devices, organic energy devices, pharmaceutical industry, etc. The physical properties of organic charge transfer cocrystals can be tuned not only by changing the donor and acceptor molecules, but also by varying the stoichiometry between the donor and the acceptor. However, the importance of the stoichiometry on tuning the properties of CTCs has still been underestimated. In this review, single-crystal growth methods of organic CTCs with different stoichiometries are first introduced, and their physical properties, including the degree of charge transfer, electrical conductivity, and field-effect mobility, are then discussed. Finally, a perspective of this research direction is provided to give the readers a general understanding of the concept.
ISSN: 2073-4352
DOI: 10.3390/cryst10110993
Rights: © 2020 The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
crystals-10-00993-v4.pdf7.11 MBAdobe PDFView/Open

Page view(s)

Updated on May 17, 2022


Updated on May 17, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.