Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/147025
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiovanni, Daviden_US
dc.contributor.authorRamesh, Sankaranen_US
dc.contributor.authorRighetto, Marcelloen_US
dc.contributor.authorLim, Melvin Jia Weien_US
dc.contributor.authorZhang, Qiannanen_US
dc.contributor.authorWang, Yueen_US
dc.contributor.authorYe, Senyunen_US
dc.contributor.authorXu, Qiangen_US
dc.contributor.authorMathews, Nripanen_US
dc.contributor.authorSum, Tze Chienen_US
dc.date.accessioned2021-03-22T06:36:07Z-
dc.date.available2021-03-22T06:36:07Z-
dc.date.issued2021-
dc.identifier.citationGiovanni, D., Ramesh, S., Righetto, M., Lim, M. J. W., Zhang, Q., Wang, Y., Ye, S., Xu, Q., Mathews, N. & Sum, T. C. (2021). The physics of interlayer exciton delocalization in Ruddlesden–Popper lead halide perovskites. Nano Letters, 21(1), 405-413. https://dx.doi.org/10.1021/acs.nanolett.0c03800en_US
dc.identifier.issn1530-6992en_US
dc.identifier.urihttps://hdl.handle.net/10356/147025-
dc.description.abstractTwo-dimensional (2D) lead halide Ruddlesden–Popper perovskites (RPP) have recently emerged as a prospective material system for optoelectronic applications. Their self-assembled multi quantum-well structure gives rise to the novel interwell energy funnelling phenomenon, which is of broad interests for photovoltaics, light-emission applications, and emerging technologies (e.g., spintronics). Herein, we develop a realistic finite quantum-well superlattice model that corroborates the hypothesis of exciton delocalization across different quantum-wells in RPP. Such delocalization leads to a sub-50 fs coherent energy transfer between adjacent wells, with the efficiency depending on the RPP phase matching and the organic large cation barrier lengths. Our approach provides a coherent and comprehensive account for both steady-state and transient dynamical experimental results in RPPs. Importantly, these findings pave the way for a deeper understanding of these systems, as a cornerstone crucial for establishing material design rules to realize efficient RPP-based devices.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNTU Start-up Grant M4080514en_US
dc.relationRG91/19en_US
dc.relationMOE2016-T2-1-034en_US
dc.relationMOE2017-T2-1-001en_US
dc.relationMOE2017-T2-2-002en_US
dc.relationNRF-CRP14-2014-03en_US
dc.relationNRF-NRFI-2018-04en_US
dc.relation.ispartofNano Lettersen_US
dc.relation.urihttps://doi.org/10.21979/N9/OIYOW1en_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.0c03800en_US
dc.subjectScience::Physics::Optics and lighten_US
dc.subjectEngineering::Materials::Photonics and optoelectronics materialsen_US
dc.titleThe physics of interlayer exciton delocalization in Ruddlesden–Popper lead halide perovskitesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.schoolInterdisciplinary Graduate School (IGS)en_US
dc.contributor.departmentSPMS, Department of Physics and Applied Physics (PAP)en_US
dc.contributor.researchEnergy Research Institute @ NTU (ERI@N)en_US
dc.identifier.doi10.1021/acs.nanolett.0c03800-
dc.description.versionAccepted versionen_US
dc.identifier.issue1en_US
dc.identifier.volume21en_US
dc.identifier.spage405en_US
dc.identifier.epage413en_US
dc.subject.keywordsExcitonsen_US
dc.subject.keywordsBinding Energyen_US
dc.description.acknowledgementThis research was supported by Nanyang Technological University under its start-up grant (M4080514); the Ministry of Education under its AcRF Tier 1 grant (RG91/19) and Tier 2 grants (MOE2016-T2-1-034, MOE2017-T2-1-001 and MOE2017-T2-2-002); and the National Research Foundation (NRF) Singapore under its Competitive Research Program (NRF-CRP14-2014-03) and its NRF Investigatorship (NRF-NRFI-2018-04).en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptSchool of Materials Science & Engineering-
Appears in Collections:SPMS Journal Articles

SCOPUSTM   
Citations 20

11
Updated on Jul 6, 2022

PublonsTM
Citations 20

11
Updated on Jul 3, 2022

Page view(s)

206
Updated on Aug 7, 2022

Download(s)

13
Updated on Aug 7, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.