Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/147152
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWon, Yoo-Seungen_US
dc.contributor.authorBhasin, Shivamen_US
dc.date.accessioned2021-08-26T02:20:43Z-
dc.date.available2021-08-26T02:20:43Z-
dc.date.issued2021-
dc.identifier.citationWon, Y. & Bhasin, S. (2021). On use of deep learning for side channel evaluation of black box hardware AES engine. 7th EAI International Conference on Industrial Networks and Intelligent Systems (INISCOM 2021), 379, 185-194. https://dx.doi.org/10.1007/978-3-030-77424-0_15en_US
dc.identifier.isbn978-3-030-77423-3-
dc.identifier.issn1867-8211-
dc.identifier.urihttps://hdl.handle.net/10356/147152-
dc.description.abstractWith the increasing demand for security and privacy, there has been an increasing availability of cryptographic acclerators out of the box in modern microcontrollers, These accelerators are optimised and often black box. Thus, proper evaluation against vulnerabilities like side-channel attacks is a challenge in absence of architecture information and thus leakage model. In this paper, we show the use of deep learning based side-channel attack can overcome this challenge, allowing evaluation of black box AES hardware engine on a secure microcontroller, without the knowledge of precise leakage model information. Our results report full key recovery with only 3,000 traces under a profiling setting.en_US
dc.language.isoenen_US
dc.rights© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. All rights reserved. This paper was published by Springer Nature Switzerland AG in Proceedings of 7th EAI International Conference on Industrial Networks and Intelligent Systems (INISCOM 2021) and is made available with permission of ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleOn use of deep learning for side channel evaluation of black box hardware AES engineen_US
dc.typeConference Paperen
dc.contributor.conference7th EAI International Conference on Industrial Networks and Intelligent Systems (INISCOM 2021)en_US
dc.contributor.researchTemasek Laboratoriesen_US
dc.identifier.doi10.1007/978-3-030-77424-0_15-
dc.description.versionAccepted versionen_US
dc.identifier.volume379en_US
dc.identifier.spage185en_US
dc.identifier.epage194en_US
dc.subject.keywordsHardware AES Engineen_US
dc.subject.keywordsSide-channel Analysisen_US
dc.subject.keywordsDeep Learningen_US
dc.citation.conferencelocationHanoi, Vietnamen_US
dc.description.acknowledgementWe gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research.en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:TL Conference Papers
Files in This Item:
File Description SizeFormat 
05_INISCOM2021.pdf10.53 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

3
Updated on Mar 25, 2023

Page view(s)

147
Updated on Mar 26, 2023

Download(s)

5
Updated on Mar 26, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.