Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/147418
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRegazzoni, Francescoen_US
dc.contributor.authorBhasin, Shivamen_US
dc.contributor.authorPour, Amir Alien_US
dc.contributor.authorAlshaer, Ihaben_US
dc.contributor.authorAydin, Furkanen_US
dc.contributor.authorAysu, Aydinen_US
dc.contributor.authorBeroulle, Vincenten_US
dc.contributor.authorDi Natale, Giorgioen_US
dc.contributor.authorFranzon, Paulen_US
dc.contributor.authorHely, Daviden_US
dc.contributor.authorHomma, Naofumien_US
dc.contributor.authorIto, Akiraen_US
dc.contributor.authorJap, Dirmantoen_US
dc.contributor.authorKashyap, Priyanken_US
dc.contributor.authorPolian, Iliaen_US
dc.contributor.authorPotluri, Seetalen_US
dc.contributor.authorUeno, Reien_US
dc.contributor.authorVatajelu, Elena-Ioanaen_US
dc.contributor.authorYli-Mäyry, Villeen_US
dc.date.accessioned2021-04-06T06:35:07Z-
dc.date.available2021-04-06T06:35:07Z-
dc.date.issued2020-
dc.identifier.citationRegazzoni, F., Bhasin, S., Pour, A. A., Alshaer, I., Aydin, F., Aysu, A., Beroulle, V., Di Natale, G., Franzon, P., Hely, D., Homma, N., Ito, A., Jap, D., Kashyap, P., Polian, I., Potluri, S., Ueno, R., Vatajelu, E. & Yli-Mäyry, V. (2020). Machine learning and hardware security : challenges and opportunities. IEEE/ACM International Conference On Computer-Aided Design, Digest of Technical Papers, ICCAD, 2020-November, 1-6. https://dx.doi.org/10.1145/3400302.3416260en_US
dc.identifier.isbn9781450380263-
dc.identifier.issn1558-2434en_US
dc.identifier.urihttps://hdl.handle.net/10356/147418-
dc.description.abstractMachine learning techniques have significantly changed our lives. They helped improving our everyday routines, but they also demonstrated to be an extremely helpful tool for more advanced and complex applications. However, the implications of hardware security problems under a massive diffusion of machine learning techniques are still to be completely understood. This paper first highlights novel applications of machine learning for hardware security, such as evaluation of post quantum cryptography hardware and extraction of physically unclonable functions from neural networks. Later, practical model extraction attack based on electromagnetic side-channel measurements are demonstrated followed by a discussion of strategies to protect proprietary models by watermarking them.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCADen_US
dc.rights© 2020 Institute of Electrical and Electronics Engineers (IEEE). All rights reserved.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleMachine learning and hardware security : challenges and opportunitiesen_US
dc.typeJournal Articleen
dc.contributor.researchTemasek Laboratories @ NTUen_US
dc.identifier.doi10.1145/3400302.3416260-
dc.identifier.scopus2-s2.0-85097934656-
dc.identifier.volume2020-Novemberen_US
dc.identifier.spage1en_US
dc.identifier.epage6en_US
dc.subject.keywordsHardware Securityen_US
dc.subject.keywordsMachine Learningen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:TL Journal Articles

SCOPUSTM   
Citations 20

8
Updated on Jun 3, 2023

Web of ScienceTM
Citations 50

1
Updated on May 28, 2023

Page view(s)

205
Updated on Jun 4, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.