Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/147714
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Herath, Kalindu | en_US |
dc.contributor.author | Prakash, Alok | en_US |
dc.contributor.author | Fahmy, Suhaib A. | en_US |
dc.contributor.author | Srikanthan, Thambipillai | en_US |
dc.date.accessioned | 2021-12-08T12:57:20Z | - |
dc.date.available | 2021-12-08T12:57:20Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Herath, K., Prakash, A., Fahmy, S. A. & Srikanthan, T. (2020). Power-efficient mapping of large applications on modern heterogeneous FPGAs. IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems, 40(12), 2508-2521. https://dx.doi.org/10.1109/TCAD.2020.3047722 | en_US |
dc.identifier.issn | 0278-0070 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/147714 | - |
dc.description.abstract | The increasing size of modern FPGAs allows for ever more complex applications to be mapped onto them. However, long design implementation times for large designs can severely affect design productivity. A modular design methodology can improve design productivity in a divide and conqueror fashion but at the expense of degraded performance and power consumption of the resulting implementation. To reduce the dominant power dissipation component in FPGAs, the routing power, methodologies have been proposed that consider data communication between modules during module formation and placement on the FPGA. Selecting proper mapping region on target FPGAs, on the other hand, is becoming a critical process because of the heterogeneous resources and column arrangements in modern FPGAs. Selecting inappropriate FPGA regions for mapping could lead to degraded performance. Hence, we propose a methodology that uses communication-aware module placement, such that modules are mapped by selecting the best shape and region on the FPGA factoring the columnar resource arrangements. Additionally, techniques for module locking and splitting have been proposed for deterministic convergence of the algorithm and for improved module placement. This methodology exhibits nearly 19% routing power reduction with respect to commercial CAD flows without any degradation in achievable performance. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | en_US |
dc.rights | © 2020 IEEE. All rights reserved. | en_US |
dc.subject | Engineering::Computer science and engineering | en_US |
dc.title | Power-efficient mapping of large applications on modern heterogeneous FPGAs | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Computer Science and Engineering | en_US |
dc.identifier.doi | 10.1109/TCAD.2020.3047722 | - |
dc.description.version | Accepted version | en_US |
dc.identifier.scopus | 2-s2.0-85099091987 | - |
dc.identifier.issue | 12 | en_US |
dc.identifier.volume | 40 | en_US |
dc.identifier.spage | 2508 | en_US |
dc.identifier.epage | 2521 | en_US |
dc.subject.keywords | Field Programmable Gate Arrays | en_US |
dc.subject.keywords | Floorplanning | en_US |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
50
1
Updated on Sep 26, 2023
Web of ScienceTM
Citations
50
1
Updated on Sep 27, 2023
Page view(s)
63
Updated on Sep 28, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.