Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/147885
Title: | Secure hot path crowdsourcing with local differential privacy under fog computing architecture | Authors: | Yang, Mengmeng Tjuawinata, Ivan Lam, Kwok-Yan Zhao, Jun Sun, Lin |
Keywords: | Engineering::Computer science and engineering | Issue Date: | 2020 | Source: | Yang, M., Tjuawinata, I., Lam, K., Zhao, J. & Sun, L. (2020). Secure hot path crowdsourcing with local differential privacy under fog computing architecture. IEEE Transactions On Services Computing. https://dx.doi.org/10.1109/TSC.2020.3039336 | Journal: | IEEE Transactions on Services Computing | Abstract: | Crowdsourcing plays an essential role in the Internet of Things (IoT) for data collection, where a group of workers is equipped with Internet-connected geolocated devices to collect sensor data for marketing or research purpose. In this paper, we consider crowdsourcing these worker's hot travel path. Each worker is required to report his real-time location information, which is sensitive and has to be protected. Local differential privacy is a strong privacy concept and has been deployed in many software systems. However, the local differential privacy technology needs a large number of participants to ensure the accuracy of the estimation, which is not always the case for crowdsourcing. To solve this problem, we proposed a trie-based iterative statistic method, which combines additive secret sharing and local differential privacy technologies. The proposed method has excellent performance even with a limited number of participants without the need of complex computation. Specifically, the proposed method contains three main components: iterative statistic, adaptive sampling, and secure reporting. We theoretically analyze the effectiveness of the proposed method and perform extensive experiments to show that the proposed method not only provides a strict privacy guarantee, but also significantly improves the performance from the previous existing solutions. | URI: | https://hdl.handle.net/10356/147885 | ISSN: | 1939-1374 | DOI: | 10.1109/TSC.2020.3039336 | Rights: | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: https://doi.org/10.1109/TSC.2020.3039336. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | NTC Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Secure hot path crowdsourcing with local differential privacy under fog computing architecture_manuscript_Melody_Ivan.pdf | 4.07 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
1
Updated on Jan 29, 2023
Page view(s)
77
Updated on Feb 3, 2023
Download(s) 50
52
Updated on Feb 3, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.