Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/147933
Title: | Novel materials applications in botany | Authors: | Lim, Hui Qi | Keywords: | Engineering::Materials | Issue Date: | 2021 | Publisher: | Nanyang Technological University | Source: | Lim, H. Q. (2021). Novel materials applications in botany. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/147933 | Abstract: | Global food demand is expected to significantly increase by 2050, nanotechnology has been applied to find alternative ways to increase crop production. Titanium dioxide is a widely used photocatalyst, and titanium dioxide nanoparticles (TiO2 NPs) were reported to increase the rate of photosynthesis which increases crop yield. Hence, this report is to study the effect of synthesis conditions on the synthesised particles. Furthermore to monitor the effect of synthesised particles on plant growth. The TiO2 NPs were synthesised using a low temperature hydrothermal method and the sol-gel method. In results, physical parameters included size and phase of the synthesised nanoparticles were compared. It was found that the sol-gel method achieved higher anatase percentage and a smaller particle size than the hydrothermal method. Different reaction times for the hydrothermal reaction also gave different percentage of anatase and brookite phases. TiO2 NPs from the hydrothermal method were applied onto Solanum lycopersicum (tomato), the chlorophyll content measurements were taken for a period of two weeks. TiO2 NPs have shown significant impact in increasing the plant growth, and the size and phase of the NPs were also observed to affect the effectiveness in plant growth. | URI: | https://hdl.handle.net/10356/147933 | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | MSE Student Reports (FYP/IA/PA/PI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FYP report _Lim Hui Qi_Final.pdf Restricted Access | 2.84 MB | Adobe PDF | View/Open |
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.