Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/148387
Full metadata record
DC FieldValueLanguage
dc.contributor.authorForoutan-Barenji, Sinaen_US
dc.contributor.authorErdem, Onuren_US
dc.contributor.authorDelikanli, Savasen_US
dc.contributor.authorYagci, Huseyin Bilgeen_US
dc.contributor.authorGheshlaghi, Negaren_US
dc.contributor.authorAltintas, Yemlihaen_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2021-05-04T03:28:29Z-
dc.date.available2021-05-04T03:28:29Z-
dc.date.issued2021-
dc.identifier.citationForoutan-Barenji, S., Erdem, O., Delikanli, S., Yagci, H. B., Gheshlaghi, N., Altintas, Y. & Demir, H. V. (2021). Single-mode lasing from a single 7 nm thick monolayer of colloidal quantum wells in a monolithic microcavity. Laser and Photonics Reviews, 15(4), 2000479-. https://dx.doi.org/10.1002/lpor.202000479en_US
dc.identifier.issn1863-8899en_US
dc.identifier.other0000-0003-0623-8987-
dc.identifier.other0000-0003-1793-112X-
dc.identifier.urihttps://hdl.handle.net/10356/148387-
dc.description.abstractIn this work, monolithically‐fabricated vertical cavity surface emitting lasers (VCSELs) of densely‐packed, orientation‐controlled, atomically flat colloidal quantum wells (CQWs) using a self‐assembly method is reported and single‐mode lasing from a record thin colloidal gain medium with a film thickness of 7 nm under femtosecond optical excitation is demonstrated. Specially engineered CQWs are used to demonstrate these hybrid CQW‐VCSELs consisting of only a few layers to a single monolayer of CQWs and are achieved the lasing from these thin gain media by thoroughly modeling and implementing a vertical cavity consisting of distributed Bragg reflectors with an additional dielectric layer for mode tuning. Accurate spectral and spatial alignment of the cavity mode with the CQW films is secured with the help of full electromagnetic computations. While overcoming the long‐pending problem of limited electrical conductivity in thicker colloidal films, such ultrathin colloidal gain media can be helpful to enable fully electrically‐driven colloidal lasers.en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relation.ispartofLaser and Photonics Reviewsen_US
dc.rightsThis is the peer reviewed version of the following article: Foroutan-Barenji, S., Erdem, O., Delikanli, S., Yagci, H. B., Gheshlaghi, N., Altintas, Y. & Demir, H. V. (2021). Single-mode lasing from a single 7 nm thick monolayer of colloidal quantum wells in a monolithic microcavity. Laser and Photonics Reviews, 15(4), 2000479-. https://dx.doi.org/10.1002/lpor.202000479, which has been published in final form at https://doi.org/10.1002/lpor.202000479. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.en_US
dc.subjectScience::Physicsen_US
dc.titleSingle-mode lasing from a single 7 nm thick monolayer of colloidal quantum wells in a monolithic microcavityen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.researchLUMINOUS! Centre of Excellence for Semiconductor Lighting & Displaysen_US
dc.identifier.doi10.1002/lpor.202000479-
dc.description.versionAccepted versionen_US
dc.identifier.scopus2-s2.0-85101918350-
dc.identifier.issue4en_US
dc.identifier.volume15en_US
dc.identifier.spage2000479en_US
dc.subject.keywordsColloidal Quantum Wellsen_US
dc.subject.keywordsSingle-mode Lasingen_US
dc.description.acknowledgementThe authors acknowledge the financial support from the Singapore National Research Foundation under the program NRF-NRFI2016-08 and in part from TUBITAK 115E679.en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
Final Revised Manuscript LPR.pdf507.64 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

8
Updated on Feb 13, 2024

Web of ScienceTM
Citations 20

10
Updated on Oct 24, 2023

Page view(s)

289
Updated on Feb 20, 2024

Download(s)

136
Updated on Feb 20, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.