Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/148590
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Junen_US
dc.contributor.authorCai, Jianen_US
dc.contributor.authorChen, Qing-Junen_US
dc.contributor.authorHe, Anen_US
dc.contributor.authorWei, Mu-Yangen_US
dc.date.accessioned2021-05-05T09:21:42Z-
dc.date.available2021-05-05T09:21:42Z-
dc.date.issued2020-
dc.identifier.citationLai, J., Cai, J., Chen, Q., He, A. & Wei, M. (2020). Influence of crack width on chloride penetration in concrete subjected to alternating wetting-drying cycles. Materials, 13(17). https://dx.doi.org/10.3390/MA13173801en_US
dc.identifier.issn1996-1944en_US
dc.identifier.other0000-0002-7780-9815-
dc.identifier.urihttps://hdl.handle.net/10356/148590-
dc.description.abstractTo investigate the durability of reinforced concrete (RC) beams under the combined actions of transverse cracks and corrosion, corrosion tests were conducted on a total of eight RC beams with different water-cement ratios and cracking states. The effects of the transverse crack width, water-cement ratio, and the length of the wetting-drying cycle on the distribution of the free chloride concentration, the cross-sectional loss of the tensile steel bars, and the chloride diffusion coefficient are analyzed. The results show that the widths of the transverse crack and the water-cement ratio of concrete greatly affected the chloride profile and content of the RC beam specimens. Specifically, the chloride contents in all the cracked RC beams at the depth of the steel bar exceeded the threshold value of 0.15%. As the width of the cracks increased, the chloride concentration and penetration of the cracked concrete beam increased. However, the chloride concentration at the reinforcement position did not seem to be obviously affected by increasing the wetting-drying cycles from 182 days to 364 days. Moreover, the decrease of the water-cement ratio effectively inhibited the penetration of chloride ions in the RC beam specimens. In terms of the cross-sectional loss of the steel bars, the average loss of the steel bar increases with increasing crack width for the beams with 182-day cycles, while the effect of crack width on the average loss is not as noticeable for the beams with 364-day cycles. Finally, a model is proposed to predict the relationship between the crack width influence coefficient, μ, and the crack width, w, and this model shows good agreement with the experimental results.en_US
dc.language.isoenen_US
dc.relation.ispartofMaterialsen_US
dc.rights© 2020 The Author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.subjectEngineering::Civil engineeringen_US
dc.titleInfluence of crack width on chloride penetration in concrete subjected to alternating wetting-drying cyclesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.identifier.doi10.3390/MA13173801-
dc.description.versionPublished versionen_US
dc.identifier.scopus2-s2.0-85090496307-
dc.identifier.issue17en_US
dc.identifier.volume13en_US
dc.subject.keywordsRC Beamsen_US
dc.subject.keywordsTransverse Cracken_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:CEE Journal Articles
Files in This Item:
File Description SizeFormat 
materials-13-03801.pdf7.02 MBAdobe PDFView/Open

Page view(s)

96
Updated on May 27, 2022

Download(s) 50

29
Updated on May 27, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.