Please use this identifier to cite or link to this item:
Title: Axial compressive behaviour of square through-beam joints between CFST columns and RC beams with multi-layers of steel meshes
Authors: Duan, Weining
Cai, Jian
Tang, Xu-Lin
Chen, Qing-Jun
Yang, Chun
He, An
Keywords: Engineering::Civil engineering
Issue Date: 2020
Source: Duan, W., Cai, J., Tang, X., Chen, Q., Yang, C. & He, A. (2020). Axial compressive behaviour of square through-beam joints between CFST columns and RC beams with multi-layers of steel meshes. Materials, 13(11).
Journal: Materials
Abstract: The axial compressive behaviour of an innovative type of square concrete filled steel tube (CFST) column to reinforced concrete (RC) beam joint was experimentally investigated in this paper. The innovative joint was designed such that (i) the steel tubes of the CFST columns were completely interrupted in the joint region, (ii) the longitudinal reinforcements from the RC beams could easily pass through the joint area and (iii) a reinforcement cage, including a series of reinforcement meshes and radial stirrups, was arranged in the joint area to strengthen the mechanical performance of the joint. A twostage experimental study was conducted to investigate the behaviour of the innovative joint under axial compression loads, where the first stage of the tests included three fullscale innovative joint specimens subjected to axial compression to assess the feasibility of the joint detailing and propose measures to further improve its axial compressive behaviour, and the second stage of the tests involved 14 innovative joint specimens with the improved detailing to study the effect of the geometric size of the joint, concrete strength and volume ratio of the steel meshes on the bearing strengths of the joints. It was generally found from the experiments that (i) the innovative joint is capable of achieving the design criterion of the 'strong jointweak member' with appropriate designs, and (ii) by decreasing the height factor and increasing the volume ratio of the steel meshes, the axial compressive strengths of the joints significantly increased, while the increase of the length factor is advantageous but limited to the resistances of the joint specimens. Because of the lack of existing design methods for the innovative joints, new design expressions were proposed to calculate the axial compression resistances of the innovative joints subjected to bearing loads, with the local compression effect, the confinement effect provided by the multilayers of steel meshes and the height effect of concrete considered. It was found that the proposed design methods were capable of providing accurate and safe resistance predictions for the innovative joints.
ISSN: 1996-1944
DOI: 10.3390/ma13112482
Rights: © 2020 The Author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
materials-13-02482-v2.pdf5.1 MBAdobe PDFView/Open

Page view(s)

Updated on Dec 5, 2021


Updated on Dec 5, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.