Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/148714
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Patricia Jia Yiingen_US
dc.date.accessioned2021-05-17T03:30:54Z-
dc.date.available2021-05-17T03:30:54Z-
dc.date.issued2009-
dc.identifier.citationWong, P. J. Y. (2009). Solutions for singular Volterra integral equations. Electronic Journal of Qualitative Theory of Differential Equations, 2009(30). https://dx.doi.org/10.14232/ejqtde.2009.4.30en_US
dc.identifier.issn1417-3875en_US
dc.identifier.urihttps://hdl.handle.net/10356/148714-
dc.description.abstractWe consider the system of Volterra integral equations ui(t)=∫t0gi(t,s)[Pi(s,u1(s),u2(s),⋯,un(s))+Qi(s,u1(s),u2(s),⋯,un(s))]ds,t∈[0,T],1≤i≤n where T>0 is fixed and the nonlinearities Pi(t,u1,u2,⋯,un) can be singular at t=0 and uj=0 where j∈{1,2,⋯,n}. Criteria are offered for the existence of fixed-sign solutions (u∗1,u∗2,⋯,u∗n) to the system of Volterra integral equations, i.e., θiu∗i(t)≥0 for t∈[0,1] and 1≤i≤n, where θi∈{1,−1} is fixed. We also include an example to illustrate the usefulness of the results obtained.en_US
dc.language.isoenen_US
dc.relation.ispartofElectronic Journal of Qualitative Theory of Differential Equationsen_US
dc.rights© 2009 Electronic Journal of Qualitative Theory of Differential Equations (EjQTDE). This is an open-access article distributed under the terms of the Creative Commons Attribution License.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleSolutions for singular Volterra integral equationsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.14232/ejqtde.2009.4.30-
dc.description.versionPublished versionen_US
dc.identifier.scopus2-s2.0-85086490474-
dc.identifier.issue30en_US
dc.identifier.volume2009en_US
dc.subject.keywordsFixed-sign Solutionsen_US
dc.subject.keywordsSingularitiesen_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
p432.pdf151.92 kBAdobe PDFView/Open

Page view(s)

123
Updated on May 20, 2022

Download(s)

7
Updated on May 20, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.