Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Jovinceen_US
dc.identifier.citationChan, J. (2021). A highly secured small-area low power decryption design. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractWith the increasing rise of technological advancements causing the general public to store their sensitive data online, encryption is now a necessity to provide sufficient security to safeguard your sensitive data. Though Advanced Encryption Standard (AES) is known to be extremely secure such that it is impossible to break by the traditional hacking methods, it is however possible to break through the use of Side Channel Attacks (SCA). Although it is known that different designs for AES encryptions have different security levels, it is imperative to know what causes these designs to be stronger than others in terms of security. This research aims to discover these causes through the use of Correlation Power Analysis (CPA) on different AES-128 designs. The designs will be compared by comparing the number of traces required to fully obtain the cipher key of the encryption process.en_US
dc.publisherNanyang Technological Universityen_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleA highly secured small-area low power decryption designen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorGwee Bah Hweeen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeBachelor of Engineering (Electrical and Electronic Engineering)en_US
item.fulltextWith Fulltext-
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
  Restricted Access
1.55 MBAdobe PDFView/Open

Page view(s)

Updated on Jun 27, 2022


Updated on Jun 27, 2022

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.