Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/149854
Title: Editorial : deep eutectic solvents/complex salts-based electrolyte for next generation rechargeable batteries
Authors: Yuan, Du
Chen, Gen
Jia, Chuankun
Zhang, Haitao
Keywords: Engineering::Materials
Issue Date: 2020
Source: Yuan, D., Chen, G., Jia, C. & Zhang, H. (2020). Editorial : deep eutectic solvents/complex salts-based electrolyte for next generation rechargeable batteries. Frontiers in Chemistry, 8. https://dx.doi.org/10.3389/fchem.2020.613353
Journal: Frontiers in Chemistry 
Abstract: Recent years have seen an expansion of renewable energy technologies driven by global demands for energy alongside social and environmental concerns. One of the most significant solutions, rechargeable batteries have promising features which include high capacity, energy density, rate capability, long lifetime, and cost-effectiveness. As the key component in energy storage devices, the electrolyte has had a major impact on the chemistry/electrochemistry of rechargeable batteries/cells for a number of reasons. These include its potential window, which limits the redox potential of an electrochemical reaction. Its electrochemical activity and conductivity also influence the electrochemical reaction and consequently the battery performance. The composition, as well as the stability, of rechargeable batteries, shapes the electrolyte-electrode interface. Furthermore, its corrosivity cannot be neglected. For these reasons, researchers are highly motivated toward breakthroughs in battery performance, exploring the fundamental properties of electrolytes based on novel formulation/synthesis. Hence, this special issue of Deep Eutectic Solvents/Complex Salts Based Electrolyte for Next Generation Rechargeable Batteries focuses on the effects of electrolytes on the electrochemistry/chemistry of rechargeable batteries and cells.
URI: https://hdl.handle.net/10356/149854
ISSN: 2296-2646
DOI: 10.3389/fchem.2020.613353
Schools: School of Materials Science and Engineering 
Rights: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
fchem-08-613353.pdf93.23 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

1
Updated on May 1, 2025

Web of ScienceTM
Citations 50

1
Updated on Oct 24, 2023

Page view(s)

281
Updated on May 6, 2025

Download(s) 50

86
Updated on May 6, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.