Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChew, Kai Yuen_US
dc.date.accessioned2021-06-09T01:16:45Z-
dc.date.available2021-06-09T01:16:45Z-
dc.date.issued2021-
dc.identifier.citationChew, K. Y. (2021). Intelligent heterogeneous wireless network using machine learning techniques. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/150102en_US
dc.identifier.urihttps://hdl.handle.net/10356/150102-
dc.description.abstractThis project aims to optimize performance of a MESH network on IEEE 802.15.4. By optimization, it refers to lower interference from other devices and better running performance on the network. This project showcases a stimulated MESH network using Raspberry Pi 3B+ running on batman-adv and tested for optimization. A main control system runs a script, using means of python language, to scan information from nodes and process the information. Through SSH, the main system can pass commands to alter the network for improvement.en_US
dc.language.isoenen_US
dc.publisherNanyang Technological Universityen_US
dc.relationA3110-201en_US
dc.subjectEngineering::Electrical and electronic engineering::Wireless communication systemsen_US
dc.titleIntelligent heterogeneous wireless network using machine learning techniquesen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorLaw Choi Looken_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeBachelor of Engineering (Electrical and Electronic Engineering)en_US
dc.contributor.supervisoremailECLLAW@ntu.edu.sgen_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
ChewKaiYu_FYP_finalreport.pdf
  Restricted Access
1.7 MBAdobe PDFView/Open

Page view(s)

116
Updated on Jun 25, 2022

Download(s)

2
Updated on Jun 25, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.