Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150158
Title: Heterogeneous transfer learning for thermal comfort modeling
Authors: Hu, Weizheng
Luo, Yong
Lu, Zongqing
Wen, Yonggang
Keywords: Engineering::Computer science and engineering
Issue Date: 2019
Source: Hu, W., Luo, Y., Lu, Z. & Wen, Y. (2019). Heterogeneous transfer learning for thermal comfort modeling. 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2019), 61-70. https://dx.doi.org/10.1145/3360322.3360843
Project: NRF2015ENC-GBICRD001-012
DSAIR@NTU
BSEWWT2017_2_06
SinBerBEST-2012-01
Abstract: For decades, the Predicted Mean Vote (PMV) model has been adopted to evaluate building occupants' thermal comfort. However, recent studies argue that the PMV model is inaccurate and suffers from two major issues: thermal comfort parameter inadequacy and modeling data inadequacy. To overcome these issues, in this paper, we propose a learning-based approach for thermal comfort modeling, named as Heterogeneous Transfer Learning (HTL) based Intelligent Thermal Comfort Neural Network (HTL-ITCNN). First, to address the parameter inadequacy issue, we add more relevant factors as the modeling features except for the six PMV parameters. Due to the flexibility of learning-based approaches, newly found thermal comfort parameters can be appended to extend the number of modeling features. Second, to mitigate the impact of the data inadequacy issue, we adopt the deep transfer learning techniques to train the thermal comfort model, where the model training would benefit from the transferred knowledge from the existing datasets. Due to the heterogeneity of the features among different datasets, we follow the HTL concept to conducting effective knowledge transfer among heterogeneous domains, which are the different but related datasets with varied features. To validate our solution, we conduct five-month data collection experiments and build our datasets. With the HTL-based two-stage learning paradigm, the experimental results show that the accuracy of HTL-ITCNN outperforms the PMV model by on average 73.9%. Besides, we verify the impacts of newly added features and knowledge transfer on model performance. Moreover, we demonstrate the enormous potential of personal thermal comfort modeling research.
URI: https://hdl.handle.net/10356/150158
ISBN: 9781450370059
DOI: 10.1145/3360322.3360843
Rights: © 2019 Association for Computing Machinery. All rights reserved. This paper was published in 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2019) and is made available with permission of Association for Computing Machinery.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Conference Papers

Files in This Item:
File Description SizeFormat 
Heterogeneous Transfer Learning for Thermal Comfort Modeling.pdf1.12 MBAdobe PDFView/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.