Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDoan, Minh Luanen_US
dc.contributor.authorMau, Camilleen_US
dc.contributor.authorKhoi, Le Haien_US
dc.date.accessioned2021-05-20T05:48:49Z-
dc.date.available2021-05-20T05:48:49Z-
dc.date.issued2019-
dc.identifier.citationDoan, M. L., Mau, C. & Khoi, L. H. (2019). Complex symmetry of composition operators on Hilbert spaces of entire Dirichlet series. Vietnam Journal of Mathematics, 47(2), 443-460. https://dx.doi.org/10.1007/s10013-018-00330-6en_US
dc.identifier.issn2305-221Xen_US
dc.identifier.other0000-0002-4282-3449-
dc.identifier.urihttps://hdl.handle.net/10356/150284-
dc.description.abstractA criterion for boundedness of composition operators acting on a class of Hilbert spaces of entire Dirichlet series, namely the class ℋ(E, β ) , was obtained in Hou et al. (J. Math. Anal. Appl. 401: 416–429, 2013) for those spaces that do not contain non-zero constant functions, while other possibilities were not studied. In this paper, we first provide a complete characterization of boundedness of composition operators on any space ℋ(E, β ) , which may or may not contain constant functions. We then study complex symmetry of composition operators on ℋ(E, β ) , via analysis of composition conjugations.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.language.isoenen_US
dc.relationM4011724.110 (RG128/16)en_US
dc.relation.ispartofVietnam Journal of Mathematicsen_US
dc.rights© 2019, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. All rights reserved. This paper was published by Springer in Vietnam Journal of Mathematics and is made available with permission of Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd.en_US
dc.subjectScience::Mathematicsen_US
dc.titleComplex symmetry of composition operators on Hilbert spaces of entire Dirichlet seriesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1007/s10013-018-00330-6-
dc.description.versionAccepted versionen_US
dc.identifier.scopus2-s2.0-85069881359-
dc.identifier.issue2en_US
dc.identifier.volume47en_US
dc.identifier.spage443en_US
dc.identifier.epage460en_US
dc.subject.keywordsHilbert Spaceen_US
dc.subject.keywordsEntire Dirichlet Seriesen_US
dc.description.acknowledgementThe second-named author was supported in part by the CN Yang Scholars Programme, Nanyang Technological University. The third-named author was supported in part by MOE’s AcRF Tier 1 grant M4011724.110 (RG128/16).en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series.pdf331.6 kBAdobe PDFView/Open

Page view(s)

125
Updated on Jul 3, 2022

Download(s)

17
Updated on Jul 3, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.