Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150448
Title: Towards high recovery in water reclamation processes : high performance NF-MBR+RO hybrid system
Authors: Laopipatpinyo, Tanchanok
Keywords: Engineering::Environmental engineering
Issue Date: 2021
Publisher: Nanyang Technological University
Source: Laopipatpinyo, T. (2021). Towards high recovery in water reclamation processes : high performance NF-MBR+RO hybrid system. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/150448
Project: EN-05
Abstract: Rising water demand due to population growth has driven the development of water technology with the objective to sufficiently provide water for the population. Water reclamation has been a promising process to increase the amount of water supply without stressing natural sources of water. Wastewater treatment technology such as membrane bioreactors (MBRs) have demonstrated high efficiency in certain micropollutants removal, especially those installed with high-retention membranes. Therefore, MBR systems equipped with NF membrane (NF-MBR) and UF membrane (UF-MBR) are examined in this study to observe their potential in removing perfluorooctane sulfonic acid (PFOS). As salinity build-up has been a frequent occurrence in NF-MBR, the study also explores the effects of high salt accumulation on the microbial community as well as fouling in NF-MBR in comparison to UF-MBR. The results had shown superior performance of NF-MBR over UF-MBR in removing PFOS. Also, high COD removal rates (>90%), comparable amount of biofilm, slightly higher amounts of bound and soluble EPS, and total ATP in NF-MBR in relative to UF-MBR delineate no negative effect of salt accumulation on microbial growth. A more rapid rise in TMP was also observed in NF-MBR in comparison to UF-MBR. With the presence of organic foulants and high concentrations of multivalent ions on the NF membrane, cake formation of suspended and colloidal particles and microbial products as well as build-up of rejected salts could possibly be the cause of a more rapid TMP rise in NF-MBR.
URI: https://hdl.handle.net/10356/150448
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_Tanchanok_Laopipatpinyo_20210423.pdf
  Restricted Access
712.44 kBAdobe PDFView/Open

Page view(s)

76
Updated on Sep 17, 2021

Download(s)

4
Updated on Sep 17, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.