Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Jingwenen_US
dc.identifier.citationGao, J. (2021). Automatic synthesis of 3D-printable finger design for parallel-jaw gripper. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractWith the increasing demand for grasping customised objects, finger design automation is more and more useful in robot industries. Among different kinds of automation approaches, the Generic Optimised Finger Design (GOFD) method is relatively promising. Both single- and multi-function fingers generated by this method can achieve 100% success rate in prescribed pick-and-place tasks. However, this method does not optimise the finger-body design or check the design strength before actual experimental verification. Therefore, this paper studies the Grasp Pose Generator(GPG) function, and proposes a modified pipeline for the GOFD to analyse objects’ geometrical information and generate 3D printable finger designs. Results show that the modified pipeline can shorten the design process time while outputting reliable CAD files. The modified pipeline is implemented in Python, and the FreeCAD and Open3D libraries are used for 3D model generation and analysis.en_US
dc.publisherNanyang Technological Universityen_US
dc.subjectEngineering::Mechanical engineering::Robotsen_US
dc.titleAutomatic synthesis of 3D-printable finger design for parallel-jaw gripperen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorPham Quang Cuongen_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeBachelor of Engineering (Mechanical Engineering)en_US
item.fulltextWith Fulltext-
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
  Restricted Access
10.72 MBAdobe PDFView/Open

Page view(s)

Updated on Jul 4, 2022


Updated on Jul 4, 2022

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.