Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150516
Title: Deadline-constrained workflow scheduling in IaaS clouds with multi-resource packing
Authors: Zhu, Zhaomeng
Tang, Xueyan 
Keywords: Engineering::Computer science and engineering
Issue Date: 2019
Source: Zhu, Z. & Tang, X. (2019). Deadline-constrained workflow scheduling in IaaS clouds with multi-resource packing. Future Generation Computer Systems, 101, 880-893. https://dx.doi.org/doi.org/10.1016/j.future.2019.07.043
Project: MOE2013-T2-2-067
2017-T1-002-024
Journal: Future Generation Computer Systems
Abstract: Workflow is a common model to represent large computations composed of dependent tasks. Most existing workflow scheduling algorithms use computing resources in a non-multiprogrammed way, by which only one task can run on a service (machine) at a time. In this paper, we study a new workflow scheduling model on heterogeneous Infrastructure-as-a-Service (IaaS) platforms, which allows multiple tasks to run concurrently on a virtual machine (VM) according to their multi-resource demands. First, we propose a list-scheduling framework for the new multiprogrammed cloud resource model. In the order of a priority list, this framework gradually appoints tasks the best placements found on both existing and new VMs on the platform. Different task prioritization and placement comparison methods can be employed for different scheduling objectives. To fully exploit the heterogeneity of IaaS platforms, the VMs can be scaled up during the scheduling process. Then, we propose a deadline-constrained workflow scheduling algorithm (called DyDL) based on this framework to optimize the cost of workflow execution. This algorithm prioritizes tasks by their latest start times and appoints tasks the placements which can meet their latest start times and incur the minimal cost increases. Experimental results show that DyDL can achieve significantly better schedules in most test cases compared to several existing deadline-constrained workflow scheduling algorithms.
URI: https://hdl.handle.net/10356/150516
ISSN: 0167-739X
DOI: doi.org/10.1016/j.future.2019.07.043
Rights: © 2019 Elsevier B.V. All rights reserved. This paper was published in Future Generation Computer Systems and is made available with permission of Elsevier B.V.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Journal Articles

Files in This Item:
File Description SizeFormat 
fgcs.pdf1.24 MBAdobe PDFView/Open

Page view(s)

81
Updated on Jan 23, 2022

Download(s)

3
Updated on Jan 23, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.