Please use this identifier to cite or link to this item:
Title: Vertical mixing in a shallow tropical reservoir
Authors: Yang, Peipei
Fong, Derek A.
Lo, Edmond Yat-Man
Monismith, Stephen G.
Keywords: Engineering::Environmental engineering
Issue Date: 2019
Source: Yang, P., Fong, D. A., Lo, E. Y. & Monismith, S. G. (2019). Vertical mixing in a shallow tropical reservoir. Limnology, 20(3), 279-296.
Journal: Limnology
Abstract: This paper presents observations of diurnal cycles of stratification and vertical mixing in Kranji Reservoir, a shallow tropical reservoir with an average depth of 6.7 m located in the northwest corner of Singapore, via field measurements, focusing on a series of three 24-h self-contained autonomous microprofiler (SCAMP) measurements. This data, representing one of the most complete data sets, shows vertical mixing parameters for a tropical shallow reservoir over a diurnal cycle. Responding to diurnal cycles, the observations indicate that the thermal and flow structures are delineated by two distinct thermoclines: a three-layer structure during the daytime and a two-layer structure during the night-time when the two thermoclines merged into one. The daytime structure consisted of a thin surface mixed layer (SML) above the diurnal thermocline, an intermediate hypolimnion layer with the two thermoclines as its boundaries, and an underflow layer below the secondary thermocline. This underflow is shown to primarily arise from a horizontal temperature gradient generated by the daytime wind and stratification, and maintained by night-time differential cooling. The nocturnal structure is comprised of a SML deepened by penetrative cooling and the underflow layer. Analysis of relevant dimensionless numbers, the turbulent kinetic energy (TKE) budget, and Fr T –Re T turbulent phase diagram provide a consistent picture of the different mixing mechanisms within each layer. This short time scale variability of vertical mixing as observed in Kranji Reservoir would be a factor in favouring primary production for such shallow tropical systems.
ISSN: 1439-8621
DOI: 10.1007/s10201-019-00577-z
Rights: © 2019 The Japanese Society of Limnology. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:NEWRI Journal Articles

Page view(s)

Updated on Jan 20, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.