Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150655
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeethaLekshmi, Sunilen_US
dc.contributor.authorKiran, Mangalampalli S. R. N.en_US
dc.contributor.authorRamamurty, Upadrastaen_US
dc.contributor.authorVarughese, Sunilen_US
dc.date.accessioned2021-06-07T09:42:23Z-
dc.date.available2021-06-07T09:42:23Z-
dc.date.issued2019-
dc.identifier.citationSeethaLekshmi, S., Kiran, M. S. R. N., Ramamurty, U. & Varughese, S. (2019). Molecular basis for the mechanical response of sulfa drug crystals. Chemistry - A European Journal, 25(2), 526-537. https://dx.doi.org/10.1002/chem.201803987en_US
dc.identifier.issn0947-6539en_US
dc.identifier.other0000-0002-4518-9420-
dc.identifier.other0000-0002-0917-6497-
dc.identifier.other0000-0003-0712-915X-
dc.identifier.urihttps://hdl.handle.net/10356/150655-
dc.description.abstractComprehension of the nanomechanical response of crystalline materials requires the understanding of the elastic and plastic deformation mechanisms in terms of the underlying crystal structures. Nanoindentation data were combined with structural and computational inputs to derive a molecular-level understanding of the nanomechanical response in eight prototypical sulfa drug molecular crystals. The magnitude of the modulus, E, was strongly connected to the non-covalent bond features, that is, the bond strength, the relative orientation with the measured crystal facet and their disposition in the crystal lattice. Additional features derived from the current study are the following. Firstly, robust synthons well isolated by weak and dispersive interactions reduce the material stiffness; in contrast, the interweaving of interactions with diverse energetics fortifies the crystal packing. Secondly, mere observation of layered structures with orthogonal distribution of strong and weak interactions is a prerequisite, but inadequate, to attain higher plasticity. Thirdly, interlocked molecular arrangements prevent long-range sliding of molecular planes and, hence, lead to enhanced E values. In a broader perspective, the observations are remarkable in deriving a molecular basis of the mechanical properties of crystalline solids, which can be exploited through crystal engineering for the purposeful design of materials with specific properties.en_US
dc.language.isoenen_US
dc.relation.ispartofChemistry - A European Journalen_US
dc.rights© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.en_US
dc.subjectScience::Chemistryen_US
dc.titleMolecular basis for the mechanical response of sulfa drug crystalsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.identifier.doi10.1002/chem.201803987-
dc.identifier.pmid30276924-
dc.identifier.scopus2-s2.0-85058318138-
dc.identifier.issue2en_US
dc.identifier.volume25en_US
dc.identifier.spage526en_US
dc.identifier.epage537en_US
dc.subject.keywordsBond-spring Analogyen_US
dc.subject.keywordsCrystal Engineeringen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:MAE Journal Articles

Page view(s)

39
Updated on Oct 25, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.