Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPareek, Parikshiten_US
dc.contributor.authorNguyen, Hung D.en_US
dc.date.accessioned2021-06-08T14:14:48Z-
dc.date.available2021-06-08T14:14:48Z-
dc.date.issued2021-
dc.identifier.citationPareek, P. & Nguyen, H. D. (2021). Gaussian Process Learning-based Probabilistic Optimal Power Flow. IEEE Transactions On Power Systems, 36(1), 541-544. https://dx.doi.org/10.1109/TPWRS.2020.3031765en_US
dc.identifier.issn1558-0679en_US
dc.identifier.other0000-0003-4688-2021-
dc.identifier.other0000-0003-2610-5161-
dc.identifier.urihttps://hdl.handle.net/10356/150725-
dc.description.abstractIn this letter, we present a novel Gaussian Process Learning-based Probabilistic Optimal Power Flow (GP-POPF) for solving POPF under renewable and load uncertainties of arbitrary distribution. The proposed method relies on a non-parametric Bayesian inference-based uncertainty propagation approach, called Gaussian Process (GP). We also suggest a new type of sensitivity called Subspace-wise Sensitivity, using observations on the interpretability of GP-POPF hyperparameters. The simulation results on 14-bus and 30-bus systems show that the proposed method provides reasonably accurate solutions when compared with Monte-Carlo Simulations (MCS) solutions at different levels of uncertain renewable penetration and load uncertainties. The proposed method requires a lesser number of samples and elapsed time. The non-parametric nature of the proposed method is manifested by testing uncertain injections that follow various distributions in the 118-bus system. The low error value results verify the proposed method's capability of working with different types of input uncertainty distributions.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Power Systemsen_US
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: https://doi.org/10.1109/TPWRS.2020.3031765en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleGaussian Process Learning-based Probabilistic Optimal Power Flowen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1109/TPWRS.2020.3031765-
dc.description.versionAccepted versionen_US
dc.identifier.scopus2-s2.0-85099403006-
dc.identifier.issue1en_US
dc.identifier.volume36en_US
dc.identifier.spage541en_US
dc.identifier.epage544en_US
dc.subject.keywordsUncertaintyen_US
dc.subject.keywordsGround Penetrating Radaren_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
IEEE_Trans_Letter_GP_POPF.pdf342.2 kBAdobe PDFView/Open

Page view(s)

137
Updated on May 23, 2022

Download(s) 50

30
Updated on May 23, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.