Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150905
Title: Synthesis of porous adsorbents for energy storage
Authors: Adham Syabil Zakir Muhamad
Keywords: Engineering::Mechanical engineering
Issue Date: 2021
Publisher: Nanyang Technological University
Source: Adham Syabil Zakir Muhamad (2021). Synthesis of porous adsorbents for energy storage. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/150905
Project: B238
Abstract: Metal Organic Frameworks (MOFs) are a heavily modifiable subset of materials which can be used to serve many different purposes. They are crystalline porous materials which consist of three-dimension networks of organic molecules and metal ions. Researchers have had a keen interest for its potential usage in industrial areas such as heat transformation application, gas storage, separation or purification. The key features that make MOFs attractive are their high porosity, wide surface areas, mouldable pore size, myriad of topologies and functionality. In this report, a wide range of MOFs are presented primarily such as MIL-101 (Cr) and its different permutations. The MOF types of UIO-66 and aluminium fumarate are discussed. The experimental methodology for synthesising MOFs is also described and discussed. The characterisations of the assorted MOFs are investigated by Scanning electron microscopy (SEM), N2 adsorption and thermogravimetric analyser (TGA). SEM is applied for in depth look at structural morphology, and the TGA is for the measurement of the thermal stability. In this project, ionic liquids are impregnated into the pores of MOFs to investigate the variations of pore sizes, which also enhances the adsorption capacity. Water adsorption measurements are conducted by gravimetric methods for the temperature of 25°C to 60 °C. Secondly, CO2 uptakes are measured by volumetric apparatus at 25°C and pressure up to 6 bar. The results show that the ionic liquid modification on MIL-101 MOFs results in the increment of adsorption capacity for both water and CO2, and the thermal stability of the materials are maintained as compared with the original MIL-101(Cr) MOFs. The proposed adsorbents are found suitable for adsorption assisted heat transformations related to cooling, heat-pump or thermal energy storage and CO2 capture or potential gas storage applications.
URI: https://hdl.handle.net/10356/150905
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Adham Syabil .pdf
  Restricted Access
1.86 MBAdobe PDFView/Open

Page view(s)

22
Updated on Oct 16, 2021

Download(s)

2
Updated on Oct 16, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.