Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Yangen_US
dc.contributor.authorFang, Yongjinen_US
dc.contributor.authorZhao, Zhiweien_US
dc.contributor.authorYuan, Changzhouen_US
dc.contributor.authorLou, David Xiong Wenen_US
dc.date.accessioned2021-07-30T08:19:41Z-
dc.date.available2021-07-30T08:19:41Z-
dc.date.issued2019-
dc.identifier.citationLiu, Y., Fang, Y., Zhao, Z., Yuan, C. & Lou, D. X. W. (2019). A ternary Fe₁₋ₓS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Advanced Energy Materials, 9(9). https://dx.doi.org/10.1002/aenm.201803052en_US
dc.identifier.issn1614-6832en_US
dc.identifier.other0000-0002-5557-4437-
dc.identifier.urihttps://hdl.handle.net/10356/150961-
dc.description.abstractSmart construction of ultraflexible electrodes with superior gravimetric and volumetric capacities is still challenging yet significant for sodium ion batteries (SIBs) toward wearable electronic devices. Herein, a hybrid film made of hierarchical Fe₁₋ₓS-filled porous carbon nanowires/reduced graphene oxide (Fe₁₋ₓS@PCNWs/rGO) is synthesized through a facile assembly and sulfuration strategy. The resultant hybrid paper exhibits high flexibility and structural stability. The multidimensional paper architecture possesses several advantages, including rendering an efficient electron/ion transport network, buffering the volume expansion of Fe₁₋ₓS nanoparticles, mitigating the dissolution of polysulfides, and enabling superior kinetics toward efficient sodium storage. When evaluated as a self-supporting anode for SIBs, the Fe₁₋ₓS@PCNWs/rGO paper electrode exhibits remarkable reversible capacities of 573–89 mAh g⁻¹ over 100 consecutive cycles at 0.1 A g⁻¹ with areal mass loadings of 0.9–11.2 mg cm⁻² and high volumetric capacities of 424–180 mAh cm⁻³ in the current density range of 0.2–5 A g⁻¹. More competitively, a SIB based on this flexible Fe₁₋ₓS@PCNWs/rGO anode demonstrates outstanding electrochemical properties, thus highlighting its enormous potential in versatile flexible and wearable applications.en_US
dc.language.isoenen_US
dc.relation.ispartofAdvanced Energy Materialsen_US
dc.rights© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.en_US
dc.subjectEngineering::Chemical engineeringen_US
dc.titleA ternary Fe₁₋ₓS@Porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteriesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.identifier.doi10.1002/aenm.201803052-
dc.identifier.scopus2-s2.0-85059538327-
dc.identifier.issue9en_US
dc.identifier.volume9en_US
dc.subject.keywordsAnodeen_US
dc.subject.keywordsFlexible Electrodeen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCBE Journal Articles

Page view(s)

25
Updated on Oct 16, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.