Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/150991
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Patricia Jia Yiingen_US
dc.contributor.authorBoey, K. L.en_US
dc.date.accessioned2021-06-01T05:31:53Z-
dc.date.available2021-06-01T05:31:53Z-
dc.date.issued2006-
dc.identifier.citationWong, P. J. Y. & Boey, K. L. (2006). Nontrivial periodic solutions in the modelling of infectious disease. Applicable Analysis, 83(1), 1-16. https://dx.doi.org/10.1080/00036810310001613151en_US
dc.identifier.issn0003-6811en_US
dc.identifier.urihttps://hdl.handle.net/10356/150991-
dc.description.abstractThe modelling of the spread of infectious disease is discussed for time t in the real (R), discrete (Z) and time scale (T) domains. We shall offer criteria for the existence of a nontrivial and nonnegative periodic solution for the model in all the three domains. These criteria can be implemented numerically and an algorithm is given.en_US
dc.language.isoenen_US
dc.relation.ispartofApplicable Analysisen_US
dc.rights© 2004 Taylor & Francis Ltd. All rights reserved.en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleNontrivial periodic solutions in the modelling of infectious diseaseen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doi10.1080/00036810310001613151-
dc.identifier.scopus2-s2.0-85064308118-
dc.identifier.issue1en_US
dc.identifier.volume83en_US
dc.identifier.spage1en_US
dc.identifier.epage16en_US
dc.subject.keywordsPeriodic Solutionen_US
dc.subject.keywordsModelling of Infectious Diseaseen_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:EEE Journal Articles

Page view(s)

44
Updated on Oct 28, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.