Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151042
Title: Dynamic assembly of active matter
Authors: Ma, Zhan
Keywords: Engineering::Bioengineering
Issue Date: 2021
Publisher: Nanyang Technological University
Source: Ma, Z. (2021). Dynamic assembly of active matter. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/151042
Project: MOE2019-T2-2-010
M4081781.120
RG104/17(S)
A1784C0018
M4011616.120
M4011873.120
Abstract: Active matter refers to particles that can dissipate energy and drive their own motion. They display intriguing dynamic assembly phenomena as not restricted by equilibrium thermodynamics, including motility-induced phase separation (MIPS), collective motion, giant number fluctuation, and formation of complex patterns, etc. The study of dynamic assembly of active matter can help both understand the emergent behavior in living creatures and design dynamic materials. Multiple models have been proposed to study active matters, such as active Brownian particles (ABPs) and Vicsek-like models. However, most of these models ignore the intrinsic trajectory curvature and chiral swimming pattern, which are widely observed in active matter systems. This thesis focuses on the phase behavior of circle swimmers. We construct the circle active Brownian particles (cABPs) model by introducing the self-propulsion torque. Then we formulate a continuum theory for cABPs, and the fluctuation dispersion relation reveals two types of instabilities of the homogeneous state. Compared with simulations results, we verify that the type I instability leads to MIPS, while the type II instability, also called finite wave-number instability, results in a dynamic clustering state and interrupts the conventional MIPS. Besides, by measuring the self-intermediate scattering function, we reveal the dynamical property of this novel inhomogeneous state. Along with obtaining the full phase diagram of cABPs, we also study the phase transition between homogeneous state and dynamic clustering state in the context of percolation theory. Finally, we find the spontaneous demixing of circle swimmers and passive particles, which may have potential application in collecting and sorting passive colloids.
URI: https://hdl.handle.net/10356/151042
DOI: 10.32657/10356/151042
DOI (Related Dataset): 10.1039/c7sm01730h
10.1002/adts.202000021
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Theses

Files in This Item:
File Description SizeFormat 
thesis_main.pdf38.9 MBAdobe PDFView/Open

Page view(s)

115
Updated on Nov 30, 2021

Download(s) 50

40
Updated on Nov 30, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.