Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151066
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMallick, Ashisen_US
dc.contributor.authorRanjan, Rajiven_US
dc.contributor.authorPrasad, Dilip Kumaren_US
dc.date.accessioned2021-07-29T12:14:18Z-
dc.date.available2021-07-29T12:14:18Z-
dc.date.issued2019-
dc.identifier.citationMallick, A., Ranjan, R. & Prasad, D. K. (2019). Inverse estimation of variable thermal parameters in a functionally graded annular fin using dragon fly optimization. Inverse Problems in Science and Engineering, 27(7), 969-986. https://dx.doi.org/10.1080/17415977.2018.1510923en_US
dc.identifier.issn1741-5977en_US
dc.identifier.urihttps://hdl.handle.net/10356/151066-
dc.description.abstractThis paper presents an inverse study of heat transfer of a conductive, convective and radiative annular fin made of a functionally graded material. Three major parameters such as conductive–convective parameter, conductive–radiative parameter and the parameter describing the variation of thermal conductivity are inversely estimated from a specified temperature field. The forward solution of temperature field is obtained from the closed form solution of nonlinear heat transfer equation using Homotopy perturbation method (HPM). A dragonfly algorithm that simulates the swarming behaviour of dragonflies, as analogous, is employed in finding out the inverse parameters. The temperature values of the forward solution are used as input data for the inverse analysis. The inverse parameters are then estimated iteratively by minimizing the objective function until the guessed temperature field approximately satisfies the preassigned temperature field of the forward solution. The inverse simulation following HPM-based forward solution converges faster than ordinary differential equation-based forward solution. The reconstructed temperature fields obtained from the various combination of inverse parameters give good agreement (∼1% error) with the desired temperature field. Thus, the presented inverse model provides an opportunity to the fin designer for selecting the several feasible combinations of thermal parameters suggesting the material design that result in a prescribed temperature field.en_US
dc.language.isoenen_US
dc.relation.ispartofInverse Problems in Science and Engineeringen_US
dc.rights© 2018 Informa UK Limited, trading as Taylor & Francis Group. All rights reserved.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleInverse estimation of variable thermal parameters in a functionally graded annular fin using dragon fly optimizationen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.identifier.doi10.1080/17415977.2018.1510923-
dc.identifier.scopus2-s2.0-85053036137-
dc.identifier.issue7en_US
dc.identifier.volume27en_US
dc.identifier.spage969en_US
dc.identifier.epage986en_US
dc.subject.keywordsInverse Studyen_US
dc.subject.keywordsFunctionally Graded Finen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

Page view(s)

50
Updated on Nov 30, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.